Sha256: 13447d61003da5747bee58c6e2f9d45215d0943e1540b8c636ad21517d71f1b2
Contents?: true
Size: 1.22 KB
Versions: 39
Compression:
Stored size: 1.22 KB
Contents
module Mspire module ErrorRate module Decoy module_function # this is the # true positives (found by estimating the number of false # hits using the # decoy) # pi_not is the ratio of decoy hits to the estimated false hits in the # target set. A data set with a small fraction of true hits will have a # pi_not close to 1. A data set where 40% of the hits are correct # should have a pi_not of 0.6. # For instance, Spivak uses a fixed pi_not of 0.9 in J. Proteome Res., # 2009, 8 (7), pp 3737–3745 def precision(num_target, num_decoy, pi_not=1.0) num_target_f = num_target.to_f num_true_pos = num_target_f - (num_decoy.to_f * pi_not) precision = if num_target_f == 0.0 if num_decoy.to_f > 0.0 0.0 else 1.0 end else num_true_pos/num_target_f end precision end # the false positive predictive rate (sometimes called the false # positive rate). This is 1 - precision def fppr(num_target, num_decoy, pi_not=1.0) 1.0 - precision(num_target, num_decoy, pi_not=1.0) end extend(self) end end end
Version data entries
39 entries across 39 versions & 1 rubygems