README.md in vowpalwabbit-0.1.0 vs README.md in vowpalwabbit-0.1.1

- old
+ new

@@ -2,13 +2,15 @@ [Vowpal Wabbit](https://vowpalwabbit.org) - fast online machine learning - for Ruby :fire: Uses the C API for blazing performance +[![Build Status](https://travis-ci.org/ankane/vowpalwabbit.svg?branch=master)](https://travis-ci.org/ankane/vowpalwabbit) + ## Installation -First, [install Vowpal Wabbit](https://vowpalwabbit.org/start.html). For Homebrew, use: +First, install the [Vowpal Wabbit C++ library](https://vowpalwabbit.org/start.html). For Homebrew, use: ```sh brew install vowpal-wabbit ``` @@ -28,11 +30,11 @@ ``` Train a model ```ruby -model = VowpalWabbit::Regressor.new(l: 100) +model = VowpalWabbit::Regressor.new(learning_rate: 100) model.fit(x, y) ``` Use `VowpalWabbit::Classifier` for classification and `VowpalWabbit::Model` for other models @@ -89,10 +91,16 @@ ```ruby [[1, 2, 3], [4, 5, 6]] ``` +Or a Numo NArray + +```ruby +Numo::DFloat.new(3, 2).seq +``` + Or an array of strings ```ruby [ "0 | price:.23 sqft:.25 age:.05 2006", @@ -103,11 +111,18 @@ Or a path to a file ```ruby model.fit("train.txt") +model.partial_fit("train.txt") model.predict("train.txt") model.score("train.txt") +``` + +Files can be compressed + +```ruby +model.fit("train.txt.gz") ``` Read more about the [input format](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format) ## History