lib/torch.rb in torch-rb-0.9.0 vs lib/torch.rb in torch-rb-0.9.1
- old
+ new
@@ -375,12 +375,10 @@
def load(f)
to_ruby(_load(File.binread(f)))
end
- # --- begin tensor creation: https://pytorch.org/cppdocs/notes/tensor_creation.html ---
-
def tensor(data, **options)
if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
options[:dtype] = numo_to_dtype[data.class]
end
@@ -409,45 +407,10 @@
end
_tensor(data, size, tensor_options(**options))
end
- # --- begin like ---
-
- def ones_like(input, **options)
- ones(input.size, **like_options(input, options))
- end
-
- def empty_like(input, **options)
- empty(input.size, **like_options(input, options))
- end
-
- def full_like(input, fill_value, **options)
- full(input.size, fill_value, **like_options(input, options))
- end
-
- def rand_like(input, **options)
- rand(input.size, **like_options(input, options))
- end
-
- def randint_like(input, low, high = nil, **options)
- # ruby doesn't support input, low = 0, high, ...
- if high.nil?
- high = low
- low = 0
- end
- randint(low, high, input.size, **like_options(input, options))
- end
-
- def randn_like(input, **options)
- randn(input.size, **like_options(input, options))
- end
-
- def zeros_like(input, **options)
- zeros(input.size, **like_options(input, options))
- end
-
# center option
def stft(input, n_fft, hop_length: nil, win_length: nil, window: nil, center: true, pad_mode: "reflect", normalized: false, onesided: true, return_complex: nil)
if center
signal_dim = input.dim
extended_shape = [1] * (3 - signal_dim) + input.size
@@ -568,17 +531,9 @@
options = options.layout(layout.to_s)
end
unless requires_grad.nil?
options = options.requires_grad(requires_grad)
end
- options
- end
-
- def like_options(input, options)
- options = options.dup
- options[:dtype] ||= input.dtype
- options[:layout] ||= input.layout
- options[:device] ||= input.device
options
end
end
end