ext/torch/nn.cpp in torch-rb-0.13.0 vs ext/torch/nn.cpp in torch-rb-0.13.1

- old
+ new

@@ -12,15 +12,13 @@ Parameter(Tensor&& t) : torch::autograd::Variable(t) { } }; void init_nn(Rice::Module& m) { auto rb_mNN = Rice::define_module_under(m, "NN"); - rb_mNN.add_handler<torch::Error>(handle_error); add_nn_functions(rb_mNN); Rice::define_module_under(rb_mNN, "Init") - .add_handler<torch::Error>(handle_error) .define_singleton_function( "_calculate_gain", [](NonlinearityType nonlinearity, double param) { return torch::nn::init::calculate_gain(nonlinearity, param); }) @@ -89,10 +87,9 @@ [](Tensor tensor, double sparsity, double std) { return torch::nn::init::sparse_(tensor, sparsity, std); }); Rice::define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter") - .add_handler<torch::Error>(handle_error) .define_method( "grad", [](Parameter& self) { auto grad = self.grad(); return grad.defined() ? Object(Rice::detail::To_Ruby<torch::Tensor>().convert(grad)) : Nil;