README.md in torch-rb-0.5.3 vs README.md in torch-rb-0.6.0

- old
+ new

@@ -28,11 +28,11 @@ ## Getting Started Deep learning is significantly faster with a GPU. If you don’t have an NVIDIA GPU, we recommend using a cloud service. [Paperspace](https://www.paperspace.com/) has a great free plan. -We’ve put together a [Docker image](https://github.com/ankane/ml-stack) to make it easy to get started. On Paperspace, create a notebook with a custom container. Set the container name to: +We’ve put together a [Docker image](https://github.com/ankane/ml-stack) to make it easy to get started. On Paperspace, create a notebook with a custom container. Under advanced options, set the container name to: ```text ankane/ml-stack:torch-gpu ``` @@ -408,10 +408,11 @@ - [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409)) - [Collaborative filtering with MovieLens](examples/movielens) - [Sequence models and word embeddings](examples/nlp) - [Generative adversarial networks](examples/gan) +- [Transfer learning](examples/transfer-learning) ## LibTorch Installation [Download LibTorch](https://pytorch.org/). For Linux, use the `cxx11 ABI` version. Then run: @@ -421,11 +422,12 @@ Here’s the list of compatible versions. Torch.rb | LibTorch --- | --- -0.5.0+ | 1.7.0-1.7.1 -0.3.0+ | 1.6.0 +0.6.0+ | 1.8.0+ +0.5.0-0.5.3 | 1.7.0-1.7.1 +0.3.0-0.4.2 | 1.6.0 0.2.0-0.2.7 | 1.5.0-1.5.1 0.1.8 | 1.4.0 0.1.0-0.1.7 | 1.3.1 ### Homebrew