README.md in torch-rb-0.2.4 vs README.md in torch-rb-0.2.5

- old
+ new

@@ -1,9 +1,11 @@ # Torch.rb :fire: Deep learning for Ruby, powered by [LibTorch](https://pytorch.org) +For computer vision tasks, also check out [TorchVision](https://github.com/ankane/torchvision) + [![Build Status](https://travis-ci.org/ankane/torch.rb.svg?branch=master)](https://travis-ci.org/ankane/torch.rb) ## Installation First, [install LibTorch](#libtorch-installation). For Homebrew, use: @@ -20,10 +22,22 @@ It can take a few minutes to compile the extension. ## Getting Started +Deep learning is significantly faster with a GPU. If you don’t have an NVIDIA GPU, we recommend using a cloud service. [Paperspace](https://www.paperspace.com/) has a great free plan. + +We’ve put together a [Docker image](https://github.com/ankane/ml-stack) to make it easy to get started. On Paperspace, create a notebook with a custom container. Set the container name to: + +```text +ankane/ml-stack:torch-gpu +``` + +And leave the other fields in that section blank. Once the notebook is running, you can run the [MNIST example](https://github.com/ankane/ml-stack/blob/master/torch-gpu/MNIST.ipynb). + +## API + This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.html). There are a few changes to make it more Ruby-like: - Methods that perform in-place modifications end with `!` instead of `_` (`add!` instead of `add_`) - Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`) - Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`) @@ -190,11 +204,11 @@ ### Neural Networks Define a neural network ```ruby -class Net < Torch::NN::Module +class MyNet < Torch::NN::Module def initialize super @conv1 = Torch::NN::Conv2d.new(1, 6, 3) @conv2 = Torch::NN::Conv2d.new(6, 16, 3) @fc1 = Torch::NN::Linear.new(16 * 6 * 6, 120) @@ -224,11 +238,11 @@ ``` Create an instance of it ```ruby -net = Net.new +net = MyNet.new input = Torch.randn(1, 1, 32, 32) net.call(input) ``` Get trainable parameters @@ -292,11 +306,11 @@ ``` Load a model ```ruby -net = Net.new +net = MyNet.new net.load_state_dict(Torch.load("net.pth")) net.eval ``` ### Tensor Creation @@ -411,12 +425,10 @@ ## Performance ### Linux -Deep learning is significantly faster on GPUs. - -Install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) and reinstall the gem. +Deep learning is significantly faster on a GPU. Install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) and reinstall the gem. Check if CUDA is available ```ruby Torch::CUDA.available?