README.md in torch-rb-0.2.0 vs README.md in torch-rb-0.2.1

- old
+ new

@@ -281,10 +281,26 @@ loss = criterion.call(output, target) loss.backward optimizer.step ``` +### Saving and Loading Models + +Save a model + +```ruby +Torch.save(net.state_dict, "net.pth") +``` + +Load a model + +```ruby +net = Net.new +net.load_state_dict(Torch.load("net.pth")) +net.eval +``` + ### Tensor Creation Here’s a list of functions to create tensors (descriptions from the [C++ docs](https://pytorch.org/cppdocs/notes/tensor_creation.html)): - `arange` returns a tensor with a sequence of integers @@ -442,9 +458,11 @@ cd torch.rb bundle install bundle exec rake compile -- --with-torch-dir=/path/to/libtorch bundle exec rake test ``` + +You can use [this script](https://gist.github.com/ankane/9b2b5fcbd66d6e4ccfeb9d73e529abe7) to test on GPUs with the AWS Deep Learning Base AMI (Ubuntu 18.04). Here are some good resources for contributors: - [PyTorch API](https://pytorch.org/docs/stable/torch.html) - [PyTorch C++ API](https://pytorch.org/cppdocs/)