README.md in torch-rb-0.13.0 vs README.md in torch-rb-0.13.1

- old
+ new

@@ -408,22 +408,16 @@ Here’s the list of compatible versions. Torch.rb | LibTorch --- | --- -0.13.0+ | 2.0.0+ -0.12.0-0.12.2 | 1.13.0-1.13.1 -0.11.0-0.11.2 | 1.12.0-1.12.1 -0.10.0-0.10.2 | 1.11.0 -0.9.0-0.9.2 | 1.10.0-1.10.2 -0.8.0-0.8.3 | 1.9.0-1.9.1 -0.6.0-0.7.0 | 1.8.0-1.8.1 -0.5.0-0.5.3 | 1.7.0-1.7.1 -0.3.0-0.4.2 | 1.6.0 -0.2.0-0.2.7 | 1.5.0-1.5.1 -0.1.8 | 1.4.0 -0.1.0-0.1.7 | 1.3.1 +0.13.x | 2.0.x +0.12.x | 1.13.x +0.11.x | 1.12.x +0.10.x | 1.11.x +0.9.x | 1.10.x +0.8.x | 1.9.x ### Homebrew You can also use Homebrew. @@ -431,12 +425,16 @@ brew install pytorch ``` ## Performance -Deep learning is significantly faster on a GPU. With Linux, install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) and reinstall the gem. +Deep learning is significantly faster on a GPU. +### Linux + +With Linux, install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) and reinstall the gem. + Check if CUDA is available ```ruby Torch::CUDA.available? ``` @@ -452,9 +450,24 @@ ```text ankane/ml-stack:torch-gpu ``` And leave the other fields in that section blank. Once the notebook is running, you can run the [MNIST example](https://github.com/ankane/ml-stack/blob/master/torch-gpu/MNIST.ipynb). + +### Mac + +With Apple silicon, check if Metal Performance Shaders (MPS) is available + +```ruby +Torch::Backends::MPS.available? +``` + +Move a neural network to a GPU + +```ruby +device = Torch.device("mps") +net.to(device) +``` ## History View the [changelog](https://github.com/ankane/torch.rb/blob/master/CHANGELOG.md)