README.md in tensor_stream-0.7.0 vs README.md in tensor_stream-0.8.0

- old
+ new

@@ -322,9 +322,44 @@ b = tf.constant(2.0) result = a + b File.write("model.pbtext", result.graph.as_graph_def) ``` +## Performance notes + +Comparative performance with respect to other ruby libraries have not yet been performed. However it is +notable that TruffleRuby and ruby-2.6.0-preview2 with the --jit flag performs considerably better with respect +to previous versions of ruby(< 2.6) + +Benchmarks running samples/linear_regression.rb on an Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz + +ruby 2.4 + +``` +$ ruby -v +ruby 2.4.0p0 (2016-12-24 revision 57164) [x86_64-linux] +$ ruby samples/linear_regression.rb +495 seconds 1000 epochs +``` + +ruby 2.6.0-preview2 + +``` +$ ruby -v +ruby 2.6.0preview2 (2018-05-31 trunk 63539) [x86_64-linux] +$ ruby --jit samples/linear_regression.rb +394 seconds 10000 epochs +``` + +truffleruby +``` +$ ruby -v +truffleruby 1.0.0-rc5, like ruby 2.4.4, GraalVM CE Native [x86_64-linux] +219 seconds 10000 epochs +``` + +For training large networks that works on images, the opencl evaluator is the only way to go. + ## Roadmap - Docs - Complete low-level op support - SciRuby evaluator