lib/svmkit/tree/decision_tree_classifier.rb in svmkit-0.2.7 vs lib/svmkit/tree/decision_tree_classifier.rb in svmkit-0.2.8
- old
+ new
@@ -52,32 +52,39 @@
# If nil is given, split process considers all features.
# @param random_seed [Integer] The seed value using to initialize the random generator.
# It is used to randomly determine the order of features when deciding spliting point.
def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
random_seed: nil)
+ SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
+ max_features: max_features, random_seed: random_seed)
+ SVMKit::Validation.check_params_integer(min_samples_leaf: min_samples_leaf)
+ SVMKit::Validation.check_params_string(criterion: criterion)
+
@params = {}
@params[:criterion] = criterion
@params[:max_depth] = max_depth
@params[:max_leaf_nodes] = max_leaf_nodes
@params[:min_samples_leaf] = min_samples_leaf
@params[:max_features] = max_features
@params[:random_seed] = random_seed
@params[:random_seed] ||= srand
- @rng = Random.new(@params[:random_seed])
@tree = nil
@classes = nil
@feature_importances = nil
@n_leaves = nil
@leaf_labels = nil
+ @rng = Random.new(@params[:random_seed])
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
# @return [DecisionTreeClassifier] The learned classifier itself.
def fit(x, y)
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_label_array(y)
n_samples, n_features = x.shape
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
build_tree(x, y)
@@ -88,34 +95,40 @@
# Predict class labels for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
def predict(x)
+ SVMKit::Validation.check_sample_array(x)
@leaf_labels[apply(x)]
end
# Predict probability for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
def predict_proba(x)
+ SVMKit::Validation.check_sample_array(x)
probs = Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_at_node(@tree, x[n, true]) })]
probs[true, @classes]
end
# Return the index of the leaf that each sample reached.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
# @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample.
def apply(x)
+ SVMKit::Validation.check_sample_array(x)
Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
end
# Dump marshal data.
# @return [Hash] The marshal data about DecisionTreeClassifier
def marshal_dump
- { params: @params, classes: @classes, tree: @tree,
- feature_importances: @feature_importances, leaf_labels: @leaf_labels,
+ { params: @params,
+ classes: @classes,
+ tree: @tree,
+ feature_importances: @feature_importances,
+ leaf_labels: @leaf_labels,
rng: @rng }
end
# Load marshal data.
# @return [nil]