lib/svmkit/preprocessing/standard_scaler.rb in svmkit-0.1.1 vs lib/svmkit/preprocessing/standard_scaler.rb in svmkit-0.1.2
- old
+ new
@@ -4,81 +4,76 @@
module SVMKit
# This module consists of the classes that perform preprocessings.
module Preprocessing
# Normalize samples by centering and scaling to unit variance.
#
+ # @example
# normalizer = SVMKit::Preprocessing::StandardScaler.new
# new_training_samples = normalizer.fit_transform(training_samples)
# new_testing_samples = normalizer.transform(testing_samples)
class StandardScaler
include Base::BaseEstimator
include Base::Transformer
- # The vector consists of the mean value for each feature.
- attr_reader :mean_vec # :nodoc:
+ # Return the vector consists of the mean value for each feature.
+ # @return [NMatrix] (shape: [1, n_features])
+ attr_reader :mean_vec
- # The vector consists of the standard deviation for each feature.
- attr_reader :std_vec # :nodoc:
+ # Return the vector consists of the standard deviation for each feature.
+ # @return [NMatrix] (shape: [1, n_features])
+ attr_reader :std_vec
# Create a new normalizer for centering and scaling to unit variance.
#
- # :call-seq:
- # new() -> StandardScaler
+ # @overload new() -> StandardScaler
def initialize(_params = {})
@mean_vec = nil
@std_vec = nil
end
# Calculate the mean value and standard deviation of each feature for scaling.
#
- # :call-seq:
- # fit(x) -> StandardScaler
+ # @overload fit(x) -> StandardScaler
#
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the mean values and standard deviations.
- # * *Returns* :
- # - StandardScaler
+ # @param x [NMatrix] (shape: [n_samples, n_features])
+ # The samples to calculate the mean values and standard deviations.
+ # @return [StandardScaler]
def fit(x, _y = nil)
@mean_vec = x.mean(0)
@std_vec = x.std(0)
self
end
# Calculate the mean values and standard deviations, and then normalize samples using them.
#
- # :call-seq:
- # fit_transform(x) -> NMatrix
+ # @overload fit_transform(x) -> NMatrix
#
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the mean values and standard deviations.
- # * *Returns* :
- # - The scaled samples (NMatrix)
+ # @param x [NMatrix] (shape: [n_samples, n_features])
+ # The samples to calculate the mean values and standard deviations.
+ # @return [NMatrix] The scaled samples.
def fit_transform(x, _y = nil)
fit(x).transform(x)
end
# Perform standardization the given samples.
#
- # call-seq:
- # transform(x) -> NMatrix
- #
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to be scaled.
- # * *Returns* :
- # - The scaled samples (NMatrix)
+ # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to be scaled.
+ # @return [NMatrix] The scaled samples.
def transform(x)
n_samples, = x.shape
(x - @mean_vec.repeat(n_samples, 0)) / @std_vec.repeat(n_samples, 0)
end
- # Serializes object through Marshal#dump.
- def marshal_dump # :nodoc:
+ # Dump marshal data.
+ # @return [Hash] The marshal data about StandardScaler.
+ def marshal_dump
{ mean_vec: Utils.dump_nmatrix(@mean_vec),
std_vec: Utils.dump_nmatrix(@std_vec) }
end
- # Deserialize object through Marshal#load.
- def marshal_load(obj) # :nodoc:
+ # Load marshal data.
+ # @return [nil]
+ def marshal_load(obj)
@mean_vec = Utils.restore_nmatrix(obj[:mean_vec])
@std_vec = Utils.restore_nmatrix(obj[:std_vec])
nil
end
end