lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.2.7 vs lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.2.8

- old
+ new

@@ -26,10 +26,11 @@ # Creates a new normalizer for scaling each feature to a given range. # # @param feature_range [Array<Float>] The desired range of samples. def initialize(feature_range: [0.0, 1.0]) + SVMKit::Validation.check_params_type(Array, feature_range: feature_range) @params = {} @params[:feature_range] = feature_range @min_vec = nil @max_vec = nil end @@ -39,10 +40,11 @@ # @overload fit(x) -> MinMaxScaler # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. # @return [MinMaxScaler] def fit(x, _y = nil) + SVMKit::Validation.check_sample_array(x) @min_vec = x.min(0) @max_vec = x.max(0) self end @@ -51,17 +53,19 @@ # @overload fit_transform(x) -> Numo::DFloat # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. # @return [Numo::DFloat] The scaled samples. def fit_transform(x, _y = nil) + SVMKit::Validation.check_sample_array(x) fit(x).transform(x) end # Perform scaling the given samples according to feature_range. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled. # @return [Numo::DFloat] The scaled samples. def transform(x) + SVMKit::Validation.check_sample_array(x) n_samples, = x.shape dif_vec = @max_vec - @min_vec nx = (x - @min_vec.tile(n_samples, 1)) / dif_vec.tile(n_samples, 1) nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0] end