lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.1.3 vs lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.2.0

- old
+ new

@@ -12,81 +12,74 @@ # new_testing_samples = normalizer.transform(testing_samples) class MinMaxScaler include Base::BaseEstimator include Base::Transformer - # @!visibility private - DEFAULT_PARAMS = { - feature_range: [0.0, 1.0] - }.freeze - # Return the vector consists of the minimum value for each feature. - # @return [NMatrix] (shape: [1, n_features]) + # @return [Numo::DFloat] (shape: [n_features]) attr_reader :min_vec # Return the vector consists of the maximum value for each feature. - # @return [NMatrix] (shape: [1, n_features]) + # @return [Numo::DFloat] (shape: [n_features]) attr_reader :max_vec # Creates a new normalizer for scaling each feature to a given range. # - # @overload new(feature_range: [0.0, 1.0]) -> MinMaxScaler - # - # @param params [Hash] The parameters for MinMaxScaler. - # @option params [Array<Float>] :feature_range ([0.0, 1.0]) The desired range of samples. - def initialize(params = {}) - @params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) + # @param feature_range [Array<Float>] The desired range of samples. + def initialize(feature_range: [0.0, 1.0]) + self.params = {} + self.params[:feature_range] = feature_range @min_vec = nil @max_vec = nil end # Calculate the minimum and maximum value of each feature for scaling. # # @overload fit(x) -> MinMaxScaler # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. # @return [MinMaxScaler] def fit(x, _y = nil) @min_vec = x.min(0) @max_vec = x.max(0) self end # Calculate the minimum and maximum values, and then normalize samples to feature_range. # - # @overload fit_transform(x) -> NMatrix + # @overload fit_transform(x) -> Numo::DFloat # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. - # @return [NMatrix] The scaled samples. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values. + # @return [Numo::DFloat] The scaled samples. def fit_transform(x, _y = nil) fit(x).transform(x) end # Perform scaling the given samples according to feature_range. # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to be scaled. - # @return [NMatrix] The scaled samples. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled. + # @return [Numo::DFloat] The scaled samples. def transform(x) n_samples, = x.shape dif_vec = @max_vec - @min_vec - nx = (x - @min_vec.repeat(n_samples, 0)) / dif_vec.repeat(n_samples, 0) + nx = (x - @min_vec.tile(n_samples, 1)) / dif_vec.tile(n_samples, 1) nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0] end # Dump marshal data. # @return [Hash] The marshal data about MinMaxScaler. def marshal_dump { params: @params, - min_vec: Utils.dump_nmatrix(@min_vec), - max_vec: Utils.dump_nmatrix(@max_vec) } + min_vec: @min_vec, + max_vec: @max_vec } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] - @min_vec = Utils.restore_nmatrix(obj[:min_vec]) - @max_vec = Utils.restore_nmatrix(obj[:max_vec]) + @min_vec = obj[:min_vec] + @max_vec = obj[:max_vec] nil end end end end