lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.1.1 vs lib/svmkit/preprocessing/min_max_scaler.rb in svmkit-0.1.2
- old
+ new
@@ -4,92 +4,85 @@
module SVMKit
# This module consists of the classes that perform preprocessings.
module Preprocessing
# Normalize samples by scaling each feature to a given range.
#
+ # @example
# normalizer = SVMKit::Preprocessing::MinMaxScaler.new(feature_range: [0.0, 1.0])
# new_training_samples = normalizer.fit_transform(training_samples)
# new_testing_samples = normalizer.transform(testing_samples)
class MinMaxScaler
include Base::BaseEstimator
include Base::Transformer
- DEFAULT_PARAMS = { # :nodoc:
+ # @!visibility private
+ DEFAULT_PARAMS = {
feature_range: [0.0, 1.0]
}.freeze
- # The vector consists of the minimum value for each feature.
- attr_reader :min_vec # :nodoc:
+ # Return the vector consists of the minimum value for each feature.
+ # @return [NMatrix] (shape: [1, n_features])
+ attr_reader :min_vec
- # The vector consists of the maximum value for each feature.
- attr_reader :max_vec # :nodoc:
+ # Return the vector consists of the maximum value for each feature.
+ # @return [NMatrix] (shape: [1, n_features])
+ attr_reader :max_vec
# Creates a new normalizer for scaling each feature to a given range.
#
- # call-seq:
- # new(feature_range: [0.0, 1.0]) -> MinMaxScaler
+ # @overload new(feature_range: [0.0, 1.0]) -> MinMaxScaler
#
- # * *Arguments* :
- # - +:feature_range+ (Array) (defaults to: [0.0, 1.0]) -- The desired range of samples.
+ # @param feature_range [Array] (defaults to: [0.0, 1.0]) The desired range of samples.
def initialize(params = {})
@params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
@min_vec = nil
@max_vec = nil
end
# Calculate the minimum and maximum value of each feature for scaling.
#
- # :call-seq:
- # fit(x) -> MinMaxScaler
+ # @overload fit(x) -> MinMaxScaler
#
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the minimum and maximum values.
- # * *Returns* :
- # - MinMaxScaler
+ # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values.
+ # @return [MinMaxScaler]
def fit(x, _y = nil)
@min_vec = x.min(0)
@max_vec = x.max(0)
self
end
# Calculate the minimum and maximum values, and then normalize samples to feature_range.
#
- # :call-seq:
- # fit_transform(x) -> NMatrix
+ # @overload fit_transform(x) -> NMatrix
#
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the minimum and maximum values.
- # * *Returns* :
- # - The scaled samples (NMatrix)
+ # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values.
+ # @return [NMatrix] The scaled samples.
def fit_transform(x, _y = nil)
fit(x).transform(x)
end
# Perform scaling the given samples according to feature_range.
#
- # call-seq:
- # transform(x) -> NMatrix
- #
- # * *Arguments* :
- # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to be scaled.
- # * *Returns* :
- # - The scaled samples (NMatrix)
+ # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to be scaled.
+ # @return [NMatrix] The scaled samples.
def transform(x)
n_samples, = x.shape
dif_vec = @max_vec - @min_vec
nx = (x - @min_vec.repeat(n_samples, 0)) / dif_vec.repeat(n_samples, 0)
nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0]
end
- # Serializes object through Marshal#dump.
- def marshal_dump # :nodoc:
+ # Dump marshal data.
+ # @return [Hash] The marshal data about MinMaxScaler.
+ def marshal_dump
{ params: @params,
min_vec: Utils.dump_nmatrix(@min_vec),
max_vec: Utils.dump_nmatrix(@max_vec) }
end
- # Deserialize object through Marshal#load.
- def marshal_load(obj) # :nodoc:
+ # Load marshal data.
+ # @return [nil]
+ def marshal_load(obj)
@params = obj[:params]
@min_vec = Utils.restore_nmatrix(obj[:min_vec])
@max_vec = Utils.restore_nmatrix(obj[:max_vec])
nil
end