lib/svmkit/pairwise_metric.rb in svmkit-0.2.7 vs lib/svmkit/pairwise_metric.rb in svmkit-0.2.8
- old
+ new
@@ -9,10 +9,12 @@
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def euclidean_distance(x, y = nil)
y = x if y.nil?
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_sample_array(y)
sum_x_vec = (x**2).sum(1)
sum_y_vec = (y**2).sum(1)
dot_xy_mat = x.dot(y.transpose)
distance_matrix = dot_xy_mat * -2.0 +
sum_x_vec.tile(y.shape[0], 1).transpose +
@@ -27,10 +29,13 @@
# @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def rbf_kernel(x, y = nil, gamma = nil)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_sample_array(y)
+ SVMKit::Validation.check_params_float(gamma: gamma)
distance_matrix = euclidean_distance(x, y)
Numo::NMath.exp((distance_matrix**2) * -gamma)
end
# Calculate the linear kernel between x and y.
@@ -38,10 +43,12 @@
# @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
# @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def linear_kernel(x, y = nil)
y = x if y.nil?
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_sample_array(y)
x.dot(y.transpose)
end
# Calculate the polynomial kernel between x and y.
#
@@ -52,10 +59,14 @@
# @param coef [Integer] The parameter of polynomial kernel.
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_sample_array(y)
+ SVMKit::Validation.check_params_float(gamma: gamma)
+ SVMKit::Validation.check_params_integer(degree: degree, coef: coef)
(x.dot(y.transpose) * gamma + coef)**degree
end
# Calculate the sigmoid kernel between x and y.
#
@@ -65,9 +76,13 @@
# @param coef [Integer] The parameter of polynomial kernel.
# @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def sigmoid_kernel(x, y = nil, gamma = nil, coef = 1)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
+ SVMKit::Validation.check_sample_array(x)
+ SVMKit::Validation.check_sample_array(y)
+ SVMKit::Validation.check_params_float(gamma: gamma)
+ SVMKit::Validation.check_params_integer(coef: coef)
Numo::NMath.tanh(x.dot(y.transpose) * gamma + coef)
end
end
end
end