lib/svmkit/pairwise_metric.rb in svmkit-0.1.3 vs lib/svmkit/pairwise_metric.rb in svmkit-0.2.0
- old
+ new
@@ -2,71 +2,71 @@
# Module for calculating pairwise distances, similarities, and kernels.
module PairwiseMetric
class << self
# Calculate the pairwise euclidean distances between x and y.
#
- # @param x [NMatrix] (shape: [n_samples_x, n_features])
- # @param y [NMatrix] (shape: [n_samples_y, n_features])
- # @return [NMatrix] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
+ # @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
+ # @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
+ # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def euclidean_distance(x, y = nil)
y = x if y.nil?
sum_x_vec = (x**2).sum(1)
sum_y_vec = (y**2).sum(1)
dot_xy_mat = x.dot(y.transpose)
distance_matrix = dot_xy_mat * -2.0 +
- sum_x_vec.repeat(y.shape[0], 1) +
- sum_y_vec.transpose.repeat(x.shape[0], 0)
- distance_matrix.abs.sqrt
+ sum_x_vec.tile(y.shape[0], 1).transpose +
+ sum_y_vec.tile(x.shape[0], 1)
+ Numo::NMath.sqrt(distance_matrix.abs)
end
# Calculate the rbf kernel between x and y.
#
- # @param x [NMatrix] (shape: [n_samples_x, n_features])
- # @param y [NMatrix] (shape: [n_samples_y, n_features])
+ # @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
+ # @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
# @param gamma [Float] The parameter of rbf kernel, if nil it is 1 / n_features.
- # @return [NMatrix] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
+ # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def rbf_kernel(x, y = nil, gamma = nil)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
distance_matrix = euclidean_distance(x, y)
- ((distance_matrix**2) * -gamma).exp
+ Numo::NMath.exp((distance_matrix**2) * -gamma)
end
# Calculate the linear kernel between x and y.
#
- # @param x [NMatrix] (shape: [n_samples_x, n_features])
- # @param y [NMatrix] (shape: [n_samples_y, n_features])
- # @return [NMatrix] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
+ # @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
+ # @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
+ # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def linear_kernel(x, y = nil)
y = x if y.nil?
x.dot(y.transpose)
end
# Calculate the polynomial kernel between x and y.
#
- # @param x [NMatrix] (shape: [n_samples_x, n_features])
- # @param y [NMatrix] (shape: [n_samples_y, n_features])
+ # @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
+ # @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
# @param degree [Integer] The parameter of polynomial kernel.
# @param gamma [Float] The parameter of polynomial kernel, if nil it is 1 / n_features.
# @param coef [Integer] The parameter of polynomial kernel.
- # @return [NMatrix] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
+ # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
(x.dot(y.transpose) * gamma + coef)**degree
end
# Calculate the sigmoid kernel between x and y.
#
- # @param x [NMatrix] (shape: [n_samples_x, n_features])
- # @param y [NMatrix] (shape: [n_samples_y, n_features])
+ # @param x [Numo::DFloat] (shape: [n_samples_x, n_features])
+ # @param y [Numo::DFloat] (shape: [n_samples_y, n_features])
# @param gamma [Float] The parameter of polynomial kernel, if nil it is 1 / n_features.
# @param coef [Integer] The parameter of polynomial kernel.
- # @return [NMatrix] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
+ # @return [Numo::DFloat] (shape: [n_samples_x, n_samples_x] or [n_samples_x, n_samples_y] if y is given)
def sigmoid_kernel(x, y = nil, gamma = nil, coef = 1)
y = x if y.nil?
gamma ||= 1.0 / x.shape[1]
- (x.dot(y.transpose) * gamma + coef).tanh
+ Numo::NMath.tanh(x.dot(y.transpose) * gamma + coef)
end
end
end
end