lib/svmkit/linear_model/svr.rb in svmkit-0.3.3 vs lib/svmkit/linear_model/svr.rb in svmkit-0.4.0
- old
+ new
@@ -1,27 +1,29 @@
# frozen_string_literal: true
require 'svmkit/validation'
require 'svmkit/base/base_estimator'
require 'svmkit/base/regressor'
+require 'svmkit/optimizer/nadam'
module SVMKit
module LinearModel
# SVR is a class that implements Support Vector Regressor
- # with stochastic gradient descent (SGD) optimization.
+ # with mini-batch stochastic gradient descent optimization.
#
# @example
# estimator =
- # SVMKit::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 100, batch_size: 20, random_seed: 1)
+ # SVMKit::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
# estimator.fit(training_samples, traininig_target_values)
# results = estimator.predict(testing_samples)
#
# *Reference*
# 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
class SVR
include Base::BaseEstimator
include Base::Regressor
+ include Validation
# Return the weight vector for SVR.
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
attr_reader :weight_vec
@@ -39,28 +41,29 @@
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param bias_scale [Float] The scale of the bias term.
# @param epsilon [Float] The margin of tolerance.
# @param max_iter [Integer] The maximum number of iterations.
# @param batch_size [Integer] The size of the mini batches.
- # @param normalize [Boolean] The flag indicating whether to normalize the weight vector.
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
+ # Nadam is selected automatically on current version.
# @param random_seed [Integer] The seed value using to initialize the random generator.
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1,
- max_iter: 100, batch_size: 50, normalize: true, random_seed: nil)
- SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon)
- SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size)
- SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize)
- SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed)
- SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
- max_iter: max_iter, batch_size: batch_size)
+ max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil)
+ check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon)
+ check_params_integer(max_iter: max_iter, batch_size: batch_size)
+ check_params_boolean(fit_bias: fit_bias)
+ check_params_type_or_nil(Integer, random_seed: random_seed)
+ check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
+ max_iter: max_iter, batch_size: batch_size)
@params = {}
@params[:reg_param] = reg_param
@params[:fit_bias] = fit_bias
@params[:bias_scale] = bias_scale
@params[:epsilon] = epsilon
@params[:max_iter] = max_iter
@params[:batch_size] = batch_size
- @params[:normalize] = normalize
+ @params[:optimizer] = optimizer
@params[:random_seed] = random_seed
@params[:random_seed] ||= srand
@weight_vec = nil
@bias_term = nil
@rng = Random.new(@params[:random_seed])
@@ -70,13 +73,13 @@
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
# @return [SVR] The learned regressor itself.
def fit(x, y)
- SVMKit::Validation.check_sample_array(x)
- SVMKit::Validation.check_tvalue_array(y)
- SVMKit::Validation.check_sample_tvalue_size(x, y)
+ check_sample_array(x)
+ check_tvalue_array(y)
+ check_sample_tvalue_size(x, y)
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
_n_samples, n_features = x.shape
if n_outputs > 1
@@ -97,11 +100,11 @@
# Predict values for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
def predict(x)
- SVMKit::Validation.check_sample_array(x)
+ check_sample_array(x)
x.dot(@weight_vec.transpose) + @bias_term
end
# Dump marshal data.
# @return [Hash] The marshal data about SVR.
@@ -129,38 +132,38 @@
samples = @params[:fit_bias] ? expand_feature(x) : x
# Initialize some variables.
n_samples, n_features = samples.shape
rand_ids = [*0...n_samples].shuffle(random: @rng)
weight_vec = Numo::DFloat.zeros(n_features)
+ optimizer = Optimizer::Nadam.new
# Start optimization.
- @params[:max_iter].times do |t|
+ @params[:max_iter].times do |_t|
# random sampling
subset_ids = rand_ids.shift(@params[:batch_size])
rand_ids.concat(subset_ids)
+ data = samples[subset_ids, true]
+ values = y[subset_ids]
# update the weight vector.
- z = samples[subset_ids, true].dot(weight_vec.transpose)
- coef = Numo::DFloat.zeros(@params[:batch_size])
- coef[(z - y[subset_ids]).gt(@params[:epsilon]).where] = 1
- coef[(y[subset_ids] - z).gt(@params[:epsilon]).where] = -1
- mean_vec = samples[subset_ids, true].transpose.dot(coef) / @params[:batch_size]
- weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec + mean_vec)
- # scale the weight vector.
- normalize_weight_vec(weight_vec) if @params[:normalize]
+ loss_grad = loss_gradient(data, values, weight_vec)
+ weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
end
split_weight_vec_bias(weight_vec)
end
- def expand_feature(x)
- Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
+ def loss_gradient(x, y, weight)
+ z = x.dot(weight)
+ grad = Numo::DFloat.zeros(@params[:batch_size])
+ grad[(z - y).gt(@params[:epsilon]).where] = 1
+ grad[(y - z).gt(@params[:epsilon]).where] = -1
+ grad
end
- def learning_rate(iter)
- 1.0 / (@params[:reg_param] * (iter + 1))
+ def weight_gradient(loss_grad, x, weight)
+ x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight
end
- def normalize_weight_vec(weight_vec)
- norm = Math.sqrt(weight_vec.dot(weight_vec))
- weight_vec * [1.0, (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)].min
+ def expand_feature(x)
+ Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
end
def split_weight_vec_bias(weight_vec)
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0