lib/svmkit/linear_model/svc.rb in svmkit-0.2.8 vs lib/svmkit/linear_model/svc.rb in svmkit-0.2.9

- old
+ new

@@ -43,30 +43,34 @@ # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. + # @param probability [Boolean] The flag indicating whether to perform probability estimation. # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, - max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) + max_iter: 100, batch_size: 50, probability: false, normalize: true, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) - SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) + SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, probability: probability, normalize: normalize) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) - + SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, + batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size + @params[:probability] = probability @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil + @prob_param = nil @classes = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. @@ -75,28 +79,40 @@ # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [SVC] The learned classifier itself. def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) + SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) + @prob_param = Numo::DFloat.zeros(n_classes, 2) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias + @prob_param[n, true] = if @params[:probability] + SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(weight.transpose) + bias, bin_y) + else + Numo::DFloat[1, 0] + end end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = binary_fit(x, bin_y) + @prob_param = if @params[:probability] + SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y) + else + Numo::DFloat[1, 0] + end end self end @@ -122,26 +138,47 @@ n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end + # Predict probability for samples. + # + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. + # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. + def predict_proba(x) + SVMKit::Validation.check_sample_array(x) + + if @classes.size > 2 + probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) + return (probs.transpose / probs.sum(axis: 1)).transpose + end + + n_samples, = x.shape + probs = Numo::DFloat.zeros(n_samples, 2) + probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) + probs[true, 0] = 1.0 - probs[true, 1] + probs + end + # Dump marshal data. # @return [Hash] The marshal data about SVC. def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, + prob_param: @prob_param, classes: @classes, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] + @prob_param = obj[:prob_param] @classes = obj[:classes] @rng = obj[:rng] nil end @@ -157,14 +194,16 @@ # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) - target_ids = subset_ids.map { |n| n if weight_vec.dot(samples[n, true]) * bin_y[n] < 1 }.compact - n_subsamples = target_ids.size - next if n_subsamples.zero? + sub_samples = samples[subset_ids, true] + sub_bin_y = bin_y[subset_ids] + target_ids = (sub_samples.dot(weight_vec.transpose) * sub_bin_y).lt(1.0).where + n_targets = target_ids.size + next if n_targets.zero? # update the weight vector. - mean_vec = samples[target_ids, true].transpose.dot(bin_y[target_ids]) / n_subsamples + mean_vec = sub_samples[target_ids, true].transpose.dot(sub_bin_y[target_ids]) / n_targets weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec - mean_vec) # scale the weight vector. normalize_weight_vec(weight_vec) if @params[:normalize] end split_weight_vec_bias(weight_vec)