lib/svmkit/linear_model/svc.rb in svmkit-0.2.8 vs lib/svmkit/linear_model/svc.rb in svmkit-0.2.9
- old
+ new
@@ -43,30 +43,34 @@
# @param reg_param [Float] The regularization parameter.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param bias_scale [Float] The scale of the bias term.
# @param max_iter [Integer] The maximum number of iterations.
# @param batch_size [Integer] The size of the mini batches.
+ # @param probability [Boolean] The flag indicating whether to perform probability estimation.
# @param normalize [Boolean] The flag indicating whether to normalize the weight vector.
# @param random_seed [Integer] The seed value using to initialize the random generator.
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
- max_iter: 100, batch_size: 50, normalize: true, random_seed: nil)
+ max_iter: 100, batch_size: 50, probability: false, normalize: true, random_seed: nil)
SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale)
SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size)
- SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize)
+ SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, probability: probability, normalize: normalize)
SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed)
-
+ SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter,
+ batch_size: batch_size)
@params = {}
@params[:reg_param] = reg_param
@params[:fit_bias] = fit_bias
@params[:bias_scale] = bias_scale
@params[:max_iter] = max_iter
@params[:batch_size] = batch_size
+ @params[:probability] = probability
@params[:normalize] = normalize
@params[:random_seed] = random_seed
@params[:random_seed] ||= srand
@weight_vec = nil
@bias_term = nil
+ @prob_param = nil
@classes = nil
@rng = Random.new(@params[:random_seed])
end
# Fit the model with given training data.
@@ -75,28 +79,40 @@
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
# @return [SVC] The learned classifier itself.
def fit(x, y)
SVMKit::Validation.check_sample_array(x)
SVMKit::Validation.check_label_array(y)
+ SVMKit::Validation.check_sample_label_size(x, y)
@classes = Numo::Int32[*y.to_a.uniq.sort]
n_classes = @classes.size
_n_samples, n_features = x.shape
if n_classes > 2
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
@bias_term = Numo::DFloat.zeros(n_classes)
+ @prob_param = Numo::DFloat.zeros(n_classes, 2)
n_classes.times do |n|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
weight, bias = binary_fit(x, bin_y)
@weight_vec[n, true] = weight
@bias_term[n] = bias
+ @prob_param[n, true] = if @params[:probability]
+ SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(weight.transpose) + bias, bin_y)
+ else
+ Numo::DFloat[1, 0]
+ end
end
else
negative_label = y.to_a.uniq.sort.first
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
@weight_vec, @bias_term = binary_fit(x, bin_y)
+ @prob_param = if @params[:probability]
+ SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y)
+ else
+ Numo::DFloat[1, 0]
+ end
end
self
end
@@ -122,26 +138,47 @@
n_samples, = x.shape
decision_values = decision_function(x)
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
end
+ # Predict probability for samples.
+ #
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
+ def predict_proba(x)
+ SVMKit::Validation.check_sample_array(x)
+
+ if @classes.size > 2
+ probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
+ return (probs.transpose / probs.sum(axis: 1)).transpose
+ end
+
+ n_samples, = x.shape
+ probs = Numo::DFloat.zeros(n_samples, 2)
+ probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
+ probs[true, 0] = 1.0 - probs[true, 1]
+ probs
+ end
+
# Dump marshal data.
# @return [Hash] The marshal data about SVC.
def marshal_dump
{ params: @params,
weight_vec: @weight_vec,
bias_term: @bias_term,
+ prob_param: @prob_param,
classes: @classes,
rng: @rng }
end
# Load marshal data.
# @return [nil]
def marshal_load(obj)
@params = obj[:params]
@weight_vec = obj[:weight_vec]
@bias_term = obj[:bias_term]
+ @prob_param = obj[:prob_param]
@classes = obj[:classes]
@rng = obj[:rng]
nil
end
@@ -157,14 +194,16 @@
# Start optimization.
@params[:max_iter].times do |t|
# random sampling
subset_ids = rand_ids.shift(@params[:batch_size])
rand_ids.concat(subset_ids)
- target_ids = subset_ids.map { |n| n if weight_vec.dot(samples[n, true]) * bin_y[n] < 1 }.compact
- n_subsamples = target_ids.size
- next if n_subsamples.zero?
+ sub_samples = samples[subset_ids, true]
+ sub_bin_y = bin_y[subset_ids]
+ target_ids = (sub_samples.dot(weight_vec.transpose) * sub_bin_y).lt(1.0).where
+ n_targets = target_ids.size
+ next if n_targets.zero?
# update the weight vector.
- mean_vec = samples[target_ids, true].transpose.dot(bin_y[target_ids]) / n_subsamples
+ mean_vec = sub_samples[target_ids, true].transpose.dot(sub_bin_y[target_ids]) / n_targets
weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec - mean_vec)
# scale the weight vector.
normalize_weight_vec(weight_vec) if @params[:normalize]
end
split_weight_vec_bias(weight_vec)