lib/svmkit/linear_model/svc.rb in svmkit-0.2.7 vs lib/svmkit/linear_model/svc.rb in svmkit-0.2.8

- old
+ new

@@ -47,10 +47,15 @@ # @param batch_size [Integer] The size of the mini batches. # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) + SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) + SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) + SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) + SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) + @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @@ -68,10 +73,13 @@ # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [SVC] The learned classifier itself. def fit(x, y) + SVMKit::Validation.check_sample_array(x) + SVMKit::Validation.check_label_array(y) + @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @@ -95,17 +103,21 @@ # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) + SVMKit::Validation.check_sample_array(x) + x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) + SVMKit::Validation.check_sample_array(x) + return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })