lib/svmkit/linear_model/svc.rb in svmkit-0.2.5 vs lib/svmkit/linear_model/svc.rb in svmkit-0.2.6

- old
+ new

@@ -1,5 +1,7 @@ +# frozen_string_literal: true + require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. @@ -114,20 +116,9 @@ # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) Numo::Int32.cast(decision_function(x).map { |v| v >= 0 ? 1 : -1 }) - end - - # Claculate the mean accuracy of the given testing data. - # - # @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data. - # @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data. - # @return [Float] Mean accuracy - def score(x, y) - p = predict(x) - n_hits = (y.to_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) - n_hits / y.size.to_f end # Dump marshal data. # @return [Hash] The marshal data about SVC. def marshal_dump