lib/svmkit/linear_model/ridge.rb in svmkit-0.6.0 vs lib/svmkit/linear_model/ridge.rb in svmkit-0.6.1
- old
+ new
@@ -1,11 +1,10 @@
# frozen_string_literal: true
require 'svmkit/validation'
-require 'svmkit/base/base_estimator'
+require 'svmkit/linear_model/sgd_linear_estimator'
require 'svmkit/base/regressor'
-require 'svmkit/optimizer/nadam'
module SVMKit
module LinearModel
# Ridge is a class that implements Ridge Regression
# with mini-batch stochastic gradient descent optimization.
@@ -14,12 +13,11 @@
# estimator =
# SVMKit::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
# estimator.fit(training_samples, traininig_values)
# results = estimator.predict(testing_samples)
#
- class Ridge
- include Base::BaseEstimator
+ class Ridge < SGDLinearEstimator
include Base::Regressor
include Validation
# Return the weight vector.
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
@@ -35,33 +33,23 @@
# Create a new Ridge regressor.
#
# @param reg_param [Float] The regularization parameter.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
+ # @param bias_scale [Float] The scale of the bias term.
# @param max_iter [Integer] The maximum number of iterations.
# @param batch_size [Integer] The size of the mini batches.
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
# If nil is given, Nadam is used.
# @param random_seed [Integer] The seed value using to initialize the random generator.
- def initialize(reg_param: 1.0, fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
- check_params_float(reg_param: reg_param)
+ def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
+ check_params_float(reg_param: reg_param, bias_scale: bias_scale)
check_params_integer(max_iter: max_iter, batch_size: batch_size)
check_params_boolean(fit_bias: fit_bias)
check_params_type_or_nil(Integer, random_seed: random_seed)
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
- @params = {}
- @params[:reg_param] = reg_param
- @params[:fit_bias] = fit_bias
- @params[:max_iter] = max_iter
- @params[:batch_size] = batch_size
- @params[:optimizer] = optimizer
- @params[:optimizer] ||= Optimizer::Nadam.new
- @params[:random_seed] = random_seed
- @params[:random_seed] ||= srand
- @weight_vec = nil
- @bias_term = nil
- @rng = Random.new(@params[:random_seed])
+ super
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
@@ -71,18 +59,18 @@
check_sample_array(x)
check_tvalue_array(y)
check_sample_tvalue_size(x, y)
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
- _n_samples, n_features = x.shape
+ n_features = x.shape[1]
if n_outputs > 1
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
@bias_term = Numo::DFloat.zeros(n_outputs)
- n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) }
+ n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
else
- @weight_vec, @bias_term = single_fit(x, y)
+ @weight_vec, @bias_term = partial_fit(x, y)
end
self
end
@@ -114,49 +102,11 @@
nil
end
private
- def single_fit(x, y)
- # Expand feature vectors for bias term.
- samples = @params[:fit_bias] ? expand_feature(x) : x
- # Initialize some variables.
- n_samples, n_features = samples.shape
- rand_ids = [*0...n_samples].shuffle(random: @rng)
- weight_vec = Numo::DFloat.zeros(n_features)
- optimizer = @params[:optimizer].dup
- # Start optimization.
- @params[:max_iter].times do |_t|
- # Random sampling.
- subset_ids = rand_ids.shift(@params[:batch_size])
- rand_ids.concat(subset_ids)
- data = samples[subset_ids, true]
- values = y[subset_ids]
- # Calculate gradients for loss function.
- loss_grad = loss_gradient(data, values, weight_vec)
- next if loss_grad.ne(0.0).count.zero?
- # Update weight.
- weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
- end
- split_weight_vec_bias(weight_vec)
- end
-
- def loss_gradient(x, y, weight)
+ def calc_loss_gradient(x, y, weight)
2.0 * (x.dot(weight) - y)
- end
-
- def weight_gradient(loss_grad, data, weight)
- (loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param] * weight
- end
-
- def expand_feature(x)
- Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
- end
-
- def split_weight_vec_bias(weight_vec)
- weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
- bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
- [weights, bias]
end
end
end
end