lib/svmkit/linear_model/ridge.rb in svmkit-0.6.0 vs lib/svmkit/linear_model/ridge.rb in svmkit-0.6.1

- old
+ new

@@ -1,11 +1,10 @@ # frozen_string_literal: true require 'svmkit/validation' -require 'svmkit/base/base_estimator' +require 'svmkit/linear_model/sgd_linear_estimator' require 'svmkit/base/regressor' -require 'svmkit/optimizer/nadam' module SVMKit module LinearModel # Ridge is a class that implements Ridge Regression # with mini-batch stochastic gradient descent optimization. @@ -14,12 +13,11 @@ # estimator = # SVMKit::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # - class Ridge - include Base::BaseEstimator + class Ridge < SGDLinearEstimator include Base::Regressor include Validation # Return the weight vector. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) @@ -35,33 +33,23 @@ # Create a new Ridge regressor. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. + # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate. # If nil is given, Nadam is used. # @param random_seed [Integer] The seed value using to initialize the random generator. - def initialize(reg_param: 1.0, fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) - check_params_float(reg_param: reg_param) + def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) + check_params_float(reg_param: reg_param, bias_scale: bias_scale) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size) - @params = {} - @params[:reg_param] = reg_param - @params[:fit_bias] = fit_bias - @params[:max_iter] = max_iter - @params[:batch_size] = batch_size - @params[:optimizer] = optimizer - @params[:optimizer] ||= Optimizer::Nadam.new - @params[:random_seed] = random_seed - @params[:random_seed] ||= srand - @weight_vec = nil - @bias_term = nil - @rng = Random.new(@params[:random_seed]) + super end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. @@ -71,18 +59,18 @@ check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] - _n_samples, n_features = x.shape + n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) - n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) } + n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } else - @weight_vec, @bias_term = single_fit(x, y) + @weight_vec, @bias_term = partial_fit(x, y) end self end @@ -114,49 +102,11 @@ nil end private - def single_fit(x, y) - # Expand feature vectors for bias term. - samples = @params[:fit_bias] ? expand_feature(x) : x - # Initialize some variables. - n_samples, n_features = samples.shape - rand_ids = [*0...n_samples].shuffle(random: @rng) - weight_vec = Numo::DFloat.zeros(n_features) - optimizer = @params[:optimizer].dup - # Start optimization. - @params[:max_iter].times do |_t| - # Random sampling. - subset_ids = rand_ids.shift(@params[:batch_size]) - rand_ids.concat(subset_ids) - data = samples[subset_ids, true] - values = y[subset_ids] - # Calculate gradients for loss function. - loss_grad = loss_gradient(data, values, weight_vec) - next if loss_grad.ne(0.0).count.zero? - # Update weight. - weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec)) - end - split_weight_vec_bias(weight_vec) - end - - def loss_gradient(x, y, weight) + def calc_loss_gradient(x, y, weight) 2.0 * (x.dot(weight) - y) - end - - def weight_gradient(loss_grad, data, weight) - (loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param] * weight - end - - def expand_feature(x) - Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])]) - end - - def split_weight_vec_bias(weight_vec) - weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec - bias = @params[:fit_bias] ? weight_vec[-1] : 0.0 - [weights, bias] end end end end