lib/svmkit/linear_model/ridge.rb in svmkit-0.4.0 vs lib/svmkit/linear_model/ridge.rb in svmkit-0.4.1
- old
+ new
@@ -37,10 +37,12 @@
#
# @param reg_param [Float] The regularization parameter.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param max_iter [Integer] The maximum number of iterations.
# @param batch_size [Integer] The size of the mini batches.
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
+ # If nil is given, Nadam is used.
# @param random_seed [Integer] The seed value using to initialize the random generator.
def initialize(reg_param: 1.0, fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
check_params_float(reg_param: reg_param)
check_params_integer(max_iter: max_iter, batch_size: batch_size)
check_params_boolean(fit_bias: fit_bias)
@@ -50,10 +52,11 @@
@params[:reg_param] = reg_param
@params[:fit_bias] = fit_bias
@params[:max_iter] = max_iter
@params[:batch_size] = batch_size
@params[:optimizer] = optimizer
+ @params[:optimizer] ||= Optimizer::Nadam.new
@params[:random_seed] = random_seed
@params[:random_seed] ||= srand
@weight_vec = nil
@bias_term = nil
@rng = Random.new(@params[:random_seed])
@@ -73,15 +76,11 @@
_n_samples, n_features = x.shape
if n_outputs > 1
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
@bias_term = Numo::DFloat.zeros(n_outputs)
- n_outputs.times do |n|
- weight, bias = single_fit(x, y[true, n])
- @weight_vec[n, true] = weight
- @bias_term[n] = bias
- end
+ n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = single_fit(x, y[true, n]) }
else
@weight_vec, @bias_term = single_fit(x, y)
end
self
@@ -122,10 +121,10 @@
samples = @params[:fit_bias] ? expand_feature(x) : x
# Initialize some variables.
n_samples, n_features = samples.shape
rand_ids = [*0...n_samples].shuffle(random: @rng)
weight_vec = Numo::DFloat.zeros(n_features)
- optimizer = Optimizer::Nadam.new
+ optimizer = @params[:optimizer].dup
# Start optimization.
@params[:max_iter].times do |_t|
# Random sampling.
subset_ids = rand_ids.shift(@params[:batch_size])
rand_ids.concat(subset_ids)