lib/svmkit/linear_model/pegasos_svc.rb in svmkit-0.1.2 vs lib/svmkit/linear_model/pegasos_svc.rb in svmkit-0.1.3

- old
+ new

@@ -42,15 +42,16 @@ # Create a new classifier with Support Vector Machine by the Pegasos algorithm. # # @overload new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> PegasosSVC # - # @param reg_param [Float] (defaults to: 1.0) The regularization parameter. - # @param fit_bias [Boolean] (defaults to: false) The flag indicating whether to fit the bias term. - # @param bias_scale [Float] (defaults to: 1.0) The scale of the bias term. - # @param max_iter [Integer] (defaults to: 100) The maximum number of iterations. - # @param batch_size [Integer] (defaults to: 50) The size of the mini batches. - # @param random_seed [Integer] (defaults to: nil) The seed value using to initialize the random generator. + # @param params [Hash] The parameters for SVC. + # @option params [Float] :reg_param (1.0) The regularization parameter. + # @option params [Boolean] :fit_bias (false) The flag indicating whether to fit the bias term. + # @option params [Float] :bias_scale (1.0) The scale of the bias term. + # @option params [Integer] :max_iter (100) The maximum number of iterations. + # @option params [Integer] :batch_size (50) The size of the mini batches. + # @option params [Integer] :random_seed (nil) The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0