lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.6.0 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.6.1
- old
+ new
@@ -1,11 +1,10 @@
# frozen_string_literal: true
require 'svmkit/validation'
-require 'svmkit/base/base_estimator'
+require 'svmkit/linear_model/sgd_linear_estimator'
require 'svmkit/base/classifier'
-require 'svmkit/optimizer/nadam'
module SVMKit
module LinearModel
# LogisticRegression is a class that implements Logistic Regression
# with mini-batch stochastic gradient descent optimization.
@@ -17,12 +16,11 @@
# estimator.fit(training_samples, traininig_labels)
# results = estimator.predict(testing_samples)
#
# *Reference*
# - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
- class LogisticRegression
- include Base::BaseEstimator
+ class LogisticRegression < SGDLinearEstimator
include Base::Classifier
include Validation
# Return the weight vector for Logistic Regression.
# @return [Numo::DFloat] (shape: [n_classes, n_features])
@@ -56,24 +54,12 @@
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
check_params_integer(max_iter: max_iter, batch_size: batch_size)
check_params_boolean(fit_bias: fit_bias)
check_params_type_or_nil(Integer, random_seed: random_seed)
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
- @params = {}
- @params[:reg_param] = reg_param
- @params[:fit_bias] = fit_bias
- @params[:bias_scale] = bias_scale
- @params[:max_iter] = max_iter
- @params[:batch_size] = batch_size
- @params[:optimizer] = optimizer
- @params[:optimizer] ||= Optimizer::Nadam.new
- @params[:random_seed] = random_seed
- @params[:random_seed] ||= srand
- @weight_vec = nil
- @bias_term = nil
+ super
@classes = nil
- @rng = Random.new(@params[:random_seed])
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
@@ -84,25 +70,23 @@
check_label_array(y)
check_sample_label_size(x, y)
@classes = Numo::Int32[*y.to_a.uniq.sort]
n_classes = @classes.size
- _n_samples, n_features = x.shape
+ n_features = x.shape[1]
if n_classes > 2
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
@bias_term = Numo::DFloat.zeros(n_classes)
n_classes.times do |n|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
- weight, bias = binary_fit(x, bin_y)
- @weight_vec[n, true] = weight
- @bias_term[n] = bias
+ @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
end
else
negative_label = y.to_a.uniq.min
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
- @weight_vec, @bias_term = binary_fit(x, bin_y)
+ @weight_vec, @bias_term = partial_fit(x, bin_y)
end
self
end
@@ -167,50 +151,11 @@
nil
end
private
- def binary_fit(x, y)
- # Expand feature vectors for bias term.
- samples = @params[:fit_bias] ? expand_feature(x) : x
- # Initialize some variables.
- n_samples, n_features = samples.shape
- rand_ids = [*0...n_samples].shuffle(random: @rng)
- weight_vec = Numo::DFloat.zeros(n_features)
- optimizer = @params[:optimizer].dup
- # Start optimization.
- @params[:max_iter].times do |_t|
- # random sampling
- subset_ids = rand_ids.shift(@params[:batch_size])
- rand_ids.concat(subset_ids)
- data = samples[subset_ids, true]
- labels = y[subset_ids]
- # calculate gradient for loss function.
- loss_grad = loss_gradient(data, labels, weight_vec)
- # update weight.
- weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
- end
- split_weight_vec_bias(weight_vec)
- end
-
- def loss_gradient(x, y, weight)
- z = x.dot(weight)
- grad = y / (Numo::NMath.exp(-y * z) + 1.0) - y
- grad
- end
-
- def weight_gradient(loss_grad, x, weight)
- x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight
- end
-
- def expand_feature(x)
- Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
- end
-
- def split_weight_vec_bias(weight_vec)
- weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
- bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
- [weights, bias]
+ def calc_loss_gradient(x, y, weight)
+ y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
end
end
end
end