lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.6.0 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.6.1

- old
+ new

@@ -1,11 +1,10 @@ # frozen_string_literal: true require 'svmkit/validation' -require 'svmkit/base/base_estimator' +require 'svmkit/linear_model/sgd_linear_estimator' require 'svmkit/base/classifier' -require 'svmkit/optimizer/nadam' module SVMKit module LinearModel # LogisticRegression is a class that implements Logistic Regression # with mini-batch stochastic gradient descent optimization. @@ -17,12 +16,11 @@ # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. - class LogisticRegression - include Base::BaseEstimator + class LogisticRegression < SGDLinearEstimator include Base::Classifier include Validation # Return the weight vector for Logistic Regression. # @return [Numo::DFloat] (shape: [n_classes, n_features]) @@ -56,24 +54,12 @@ check_params_float(reg_param: reg_param, bias_scale: bias_scale) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) - @params = {} - @params[:reg_param] = reg_param - @params[:fit_bias] = fit_bias - @params[:bias_scale] = bias_scale - @params[:max_iter] = max_iter - @params[:batch_size] = batch_size - @params[:optimizer] = optimizer - @params[:optimizer] ||= Optimizer::Nadam.new - @params[:random_seed] = random_seed - @params[:random_seed] ||= srand - @weight_vec = nil - @bias_term = nil + super @classes = nil - @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. @@ -84,25 +70,23 @@ check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size - _n_samples, n_features = x.shape + n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 - weight, bias = binary_fit(x, bin_y) - @weight_vec[n, true] = weight - @bias_term[n] = bias + @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 - @weight_vec, @bias_term = binary_fit(x, bin_y) + @weight_vec, @bias_term = partial_fit(x, bin_y) end self end @@ -167,50 +151,11 @@ nil end private - def binary_fit(x, y) - # Expand feature vectors for bias term. - samples = @params[:fit_bias] ? expand_feature(x) : x - # Initialize some variables. - n_samples, n_features = samples.shape - rand_ids = [*0...n_samples].shuffle(random: @rng) - weight_vec = Numo::DFloat.zeros(n_features) - optimizer = @params[:optimizer].dup - # Start optimization. - @params[:max_iter].times do |_t| - # random sampling - subset_ids = rand_ids.shift(@params[:batch_size]) - rand_ids.concat(subset_ids) - data = samples[subset_ids, true] - labels = y[subset_ids] - # calculate gradient for loss function. - loss_grad = loss_gradient(data, labels, weight_vec) - # update weight. - weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec)) - end - split_weight_vec_bias(weight_vec) - end - - def loss_gradient(x, y, weight) - z = x.dot(weight) - grad = y / (Numo::NMath.exp(-y * z) + 1.0) - y - grad - end - - def weight_gradient(loss_grad, x, weight) - x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight - end - - def expand_feature(x) - Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) - end - - def split_weight_vec_bias(weight_vec) - weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec - bias = @params[:fit_bias] ? weight_vec[-1] : 0.0 - [weights, bias] + def calc_loss_gradient(x, y, weight) + y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y end end end end