lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.3.3 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.4.0

- old
+ new

@@ -1,29 +1,30 @@ # frozen_string_literal: true require 'svmkit/validation' require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' +require 'svmkit/optimizer/nadam' module SVMKit - # This module consists of the classes that implement generalized linear models. module LinearModel # LogisticRegression is a class that implements Logistic Regression - # with stochastic gradient descent (SGD) optimization. + # with mini-batch stochastic gradient descent optimization. # For multiclass classification problem, it uses one-vs-the-rest strategy. # # @example # estimator = - # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) + # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* - # 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. + # - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. class LogisticRegression include Base::BaseEstimator include Base::Classifier + include Validation # Return the weight vector for Logistic Regression. # @return [Numo::DFloat] (shape: [n_classes, n_features]) attr_reader :weight_vec @@ -45,27 +46,27 @@ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. - # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. + # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate. + # Nadam is selected automatically on current version. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, - max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) - SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) - SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) - SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) - SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) - SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, - batch_size: batch_size) + max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) + check_params_float(reg_param: reg_param, bias_scale: bias_scale) + check_params_integer(max_iter: max_iter, batch_size: batch_size) + check_params_boolean(fit_bias: fit_bias) + check_params_type_or_nil(Integer, random_seed: random_seed) + check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size - @params[:normalize] = normalize + @params[:optimizer] = optimizer @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @classes = nil @@ -76,13 +77,13 @@ # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) - SVMKit::Validation.check_sample_array(x) - SVMKit::Validation.check_label_array(y) - SVMKit::Validation.check_sample_label_size(x, y) + check_sample_array(x) + check_label_array(y) + check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape @@ -107,21 +108,20 @@ # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) - SVMKit::Validation.check_sample_array(x) - + check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - SVMKit::Validation.check_sample_array(x) + check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) @@ -131,11 +131,11 @@ # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) - SVMKit::Validation.check_sample_array(x) + check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape @@ -166,43 +166,44 @@ nil end private - def binary_fit(x, bin_y) + def binary_fit(x, y) # Expand feature vectors for bias term. samples = @params[:fit_bias] ? expand_feature(x) : x # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) + optimizer = Optimizer::Nadam.new # Start optimization. - @params[:max_iter].times do |t| + @params[:max_iter].times do |_t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) - # update the weight vector. - df = samples[subset_ids, true].dot(weight_vec.transpose) - coef = bin_y[subset_ids] / (Numo::NMath.exp(-bin_y[subset_ids] * df) + 1.0) - bin_y[subset_ids] - mean_vec = samples[subset_ids, true].transpose.dot(coef) / @params[:batch_size] - weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec + mean_vec) - # scale the weight vector. - normalize_weight_vec(weight_vec) if @params[:normalize] + data = samples[subset_ids, true] + labels = y[subset_ids] + # calculate gradient for loss function. + loss_grad = loss_gradient(data, labels, weight_vec) + # update weight. + weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec)) end split_weight_vec_bias(weight_vec) end - def expand_feature(x) - Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) + def loss_gradient(x, y, weight) + z = x.dot(weight) + grad = y / (Numo::NMath.exp(-y * z) + 1.0) - y + grad end - def learning_rate(iter) - 1.0 / (@params[:reg_param] * (iter + 1)) + def weight_gradient(loss_grad, x, weight) + x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight end - def normalize_weight_vec(weight_vec) - norm = Math.sqrt(weight_vec.dot(weight_vec)) - weight_vec * [1.0, (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)].min + def expand_feature(x) + Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) end def split_weight_vec_bias(weight_vec) weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec bias = @params[:fit_bias] ? weight_vec[-1] : 0.0