lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.7 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.8

- old
+ new

@@ -48,10 +48,15 @@ # @param batch_size [Integer] The size of the mini batches. # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) + SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) + SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) + SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) + SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) + @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @@ -69,26 +74,29 @@ # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) + SVMKit::Validation.check_sample_array(x) + SVMKit::Validation.check_label_array(y) + @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| - bin_y = Numo::Int32.cast(y.eq(@classes[n])) + bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias end else negative_label = y.to_a.uniq.sort.first - bin_y = Numo::Int32.cast(y.ne(negative_label)) + bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = binary_fit(x, bin_y) end self end @@ -96,30 +104,36 @@ # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) + SVMKit::Validation.check_sample_array(x) + x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - return Numo::Int32.cast(decision_function(x).ge(0.5)) * 2 - 1 if @classes.size <= 2 + SVMKit::Validation.check_sample_array(x) + return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 + n_samples, = x.shape - decision_values = decision_function(x) + decision_values = predict_proba(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) + SVMKit::Validation.check_sample_array(x) + proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) @@ -163,12 +177,12 @@ # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. df = samples[subset_ids, true].dot(weight_vec.transpose) - coef = bin_y[subset_ids] / (Numo::NMath.exp(-bin_y[subset_ids] * df) + 1.0) + coef = bin_y[subset_ids] / (Numo::NMath.exp(-bin_y[subset_ids] * df) + 1.0) - bin_y[subset_ids] mean_vec = samples[subset_ids, true].transpose.dot(coef) / @params[:batch_size] - weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec - mean_vec) + weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec + mean_vec) # scale the weight vector. normalize_weight_vec(weight_vec) if @params[:normalize] end split_weight_vec_bias(weight_vec) end