lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.6 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.7

- old
+ new

@@ -6,11 +6,11 @@ module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel # LogisticRegression is a class that implements Logistic Regression # with stochastic gradient descent (SGD) optimization. - # Note that the class performs as a binary classifier. + # For multiclass classification problem, it uses one-vs-the-rest strategy. # # @example # estimator = # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) @@ -21,18 +21,22 @@ class LogisticRegression include Base::BaseEstimator include Base::Classifier # Return the weight vector for Logistic Regression. - # @return [Numo::DFloat] (shape: [n_features]) + # @return [Numo::DFloat] (shape: [n_classes, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for Logistic Regression. - # @return [Float] + # @return [Numo::DFloat] (shape: [n_classes]) attr_reader :bias_term - # Return the random generator for transformation. + # Return the class labels. + # @return [Numo::Int32] (shape: [n_classes]) + attr_reader :classes + + # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new classifier with Logisitc Regression by the SGD optimization. # @@ -40,124 +44,154 @@ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. + # @param normalize [Boolean] The flag indicating whether to normalize the weight vector. # @param random_seed [Integer] The seed value using to initialize the random generator. - def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) + def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, + max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size + @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil - @bias_term = 0.0 + @bias_term = nil + @classes = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. - # @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels) - # to be used for fitting the model. + # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) - # Generate binary labels. - negative_label = y.to_a.uniq.sort.shift - bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } - # Expand feature vectors for bias term. - samples = x - if @params[:fit_bias] - samples = Numo::NArray.hstack( - [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] - ) - end - # Initialize some variables. - n_samples, n_features = samples.shape - rand_ids = [*0...n_samples].shuffle(random: @rng) - weight_vec = Numo::DFloat.zeros(n_features) - # Start optimization. - @params[:max_iter].times do |t| - # random sampling - subset_ids = rand_ids.shift(@params[:batch_size]) - rand_ids.concat(subset_ids) - # update the weight vector. - eta = 1.0 / (@params[:reg_param] * (t + 1)) - mean_vec = Numo::DFloat.zeros(n_features) - subset_ids.each do |n| - z = weight_vec.dot(samples[n, true]) - coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) - mean_vec += samples[n, true] * coef + @classes = Numo::Int32[*y.to_a.uniq.sort] + n_classes = @classes.size + _n_samples, n_features = x.shape + + if n_classes > 2 + @weight_vec = Numo::DFloat.zeros(n_classes, n_features) + @bias_term = Numo::DFloat.zeros(n_classes) + n_classes.times do |n| + bin_y = Numo::Int32.cast(y.eq(@classes[n])) + weight, bias = binary_fit(x, bin_y) + @weight_vec[n, true] = weight + @bias_term[n] = bias end - mean_vec *= eta / @params[:batch_size] - weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec - # scale the weight vector. - norm = Math.sqrt(weight_vec.dot(weight_vec)) - scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) - weight_vec *= [1.0, scaler].min - end - # Store the learned model. - if @params[:fit_bias] - @weight_vec = weight_vec[0...n_features - 1] - @bias_term = weight_vec[n_features - 1] else - @weight_vec = weight_vec[0...n_features] - @bias_term = 0.0 + negative_label = y.to_a.uniq.sort.first + bin_y = Numo::Int32.cast(y.ne(negative_label)) + @weight_vec, @bias_term = binary_fit(x, bin_y) end + self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. - # @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample. + # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) - @weight_vec.dot(x.transpose) + @bias_term + x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - Numo::Int32.cast(sigmoid(decision_function(x)).map { |v| v >= 0.5 ? 1 : -1 }) + return Numo::Int32.cast(decision_function(x).ge(0.5)) * 2 - 1 if @classes.size <= 2 + + n_samples, = x.shape + decision_values = decision_function(x) + Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) + proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) + return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 + n_samples, = x.shape - proba = Numo::DFloat.zeros(n_samples, 2) - proba[true, 1] = sigmoid(decision_function(x)) - proba[true, 0] = 1.0 - proba[true, 1] - proba + probs = Numo::DFloat.zeros(n_samples, 2) + probs[true, 1] = proba + probs[true, 0] = 1.0 - proba + probs end # Dump marshal data. # @return [Hash] The marshal data about LogisticRegression. def marshal_dump - { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } + { params: @params, + weight_vec: @weight_vec, + bias_term: @bias_term, + classes: @classes, + rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] + @classes = obj[:classes] @rng = obj[:rng] nil end private - def sigmoid(x) - 1.0 / (Numo::NMath.exp(-x) + 1.0) + def binary_fit(x, bin_y) + # Expand feature vectors for bias term. + samples = @params[:fit_bias] ? expand_feature(x) : x + # Initialize some variables. + n_samples, n_features = samples.shape + rand_ids = [*0...n_samples].shuffle(random: @rng) + weight_vec = Numo::DFloat.zeros(n_features) + # Start optimization. + @params[:max_iter].times do |t| + # random sampling + subset_ids = rand_ids.shift(@params[:batch_size]) + rand_ids.concat(subset_ids) + # update the weight vector. + df = samples[subset_ids, true].dot(weight_vec.transpose) + coef = bin_y[subset_ids] / (Numo::NMath.exp(-bin_y[subset_ids] * df) + 1.0) + mean_vec = samples[subset_ids, true].transpose.dot(coef) / @params[:batch_size] + weight_vec -= learning_rate(t) * (@params[:reg_param] * weight_vec - mean_vec) + # scale the weight vector. + normalize_weight_vec(weight_vec) if @params[:normalize] + end + split_weight_vec_bias(weight_vec) + end + + def expand_feature(x) + Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]) + end + + def learning_rate(iter) + 1.0 / (@params[:reg_param] * (iter + 1)) + end + + def normalize_weight_vec(weight_vec) + norm = Math.sqrt(weight_vec.dot(weight_vec)) + weight_vec * [1.0, (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)].min + end + + def split_weight_vec_bias(weight_vec) + weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec + bias = @params[:fit_bias] ? weight_vec[-1] : 0.0 + [weights, bias] end end end end