lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.0 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.1

- old
+ new

@@ -18,20 +18,10 @@ # 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. class LogisticRegression include Base::BaseEstimator include Base::Classifier - # @!visibility private - DEFAULT_PARAMS = { - reg_param: 1.0, - fit_bias: false, - bias_scale: 1.0, - max_iter: 100, - batch_size: 50, - random_seed: nil - }.freeze - # Return the weight vector for Logistic Regression. # @return [Numo::DFloat] (shape: [n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for Logistic Regression. @@ -50,21 +40,21 @@ # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) - self.params = {} - self.params[:reg_param] = reg_param - self.params[:fit_bias] = fit_bias - self.params[:bias_scale] = bias_scale - self.params[:max_iter] = max_iter - self.params[:batch_size] = batch_size - self.params[:random_seed] = random_seed - self.params[:random_seed] ||= srand + @params = {} + @params[:reg_param] = reg_param + @params[:fit_bias] = fit_bias + @params[:bias_scale] = bias_scale + @params[:max_iter] = max_iter + @params[:batch_size] = batch_size + @params[:random_seed] = random_seed + @params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 - @rng = Random.new(self.params[:random_seed]) + @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. @@ -75,41 +65,41 @@ # Generate binary labels. negative_label = y.to_a.uniq.sort.shift bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } # Expand feature vectors for bias term. samples = x - if params[:fit_bias] + if @params[:fit_bias] samples = Numo::NArray.hstack( - [samples, Numo::DFloat.ones([x.shape[0], 1]) * params[:bias_scale]] + [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] ) end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. - params[:max_iter].times do |t| + @params[:max_iter].times do |t| # random sampling - subset_ids = rand_ids.shift(params[:batch_size]) + subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. - eta = 1.0 / (params[:reg_param] * (t + 1)) + eta = 1.0 / (@params[:reg_param] * (t + 1)) mean_vec = Numo::DFloat.zeros(n_features) subset_ids.each do |n| z = weight_vec.dot(samples[n, true]) coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) mean_vec += samples[n, true] * coef end - mean_vec *= eta / params[:batch_size] - weight_vec = weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec + mean_vec *= eta / @params[:batch_size] + weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec # scale the weight vector. norm = Math.sqrt(weight_vec.dot(weight_vec)) - scaler = (1.0 / params[:reg_param]**0.5) / (norm + 1.0e-12) + scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. - if params[:fit_bias] + if @params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 @@ -154,16 +144,16 @@ end # Dump marshal data. # @return [Hash] The marshal data about LogisticRegression. def marshal_dump - { params: params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } + { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) - self.params = obj[:params] + @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end