lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.1.3 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.2.0

- old
+ new

@@ -29,11 +29,11 @@ batch_size: 50, random_seed: nil }.freeze # Return the weight vector for Logistic Regression. - # @return [NMatrix] (shape: [1, n_features]) + # @return [Numo::DFloat] (shape: [n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for Logistic Regression. # @return [Float] attr_reader :bias_term @@ -42,62 +42,70 @@ # @return [Random] attr_reader :rng # Create a new classifier with Logisitc Regression by the SGD optimization. # - # @overload new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> LogisiticRegression - # - # @param params [Hash] The parameters for Logistic Regression. - # @option params [Float] :reg_param (1.0) The regularization parameter. - # @option params [Boolean] :fit_bias (false) The flag indicating whether to fit the bias term. - # @option params [Float] :bias_scale (1.0) The scale of the bias term. + # @param reg_param [Float] The regularization parameter. + # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. + # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. - # @option params [Integer] :max_iter (100) The maximum number of iterations. - # @option params [Integer] :batch_size (50) The size of the mini batches. - # @option params [Integer] :random_seed (nil) The seed value using to initialize the random generator. - def initialize(params = {}) - self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) + # @param max_iter [Integer] The maximum number of iterations. + # @param batch_size [Integer] The size of the mini batches. + # @param random_seed [Integer] The seed value using to initialize the random generator. + def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) + self.params = {} + self.params[:reg_param] = reg_param + self.params[:fit_bias] = fit_bias + self.params[:bias_scale] = bias_scale + self.params[:max_iter] = max_iter + self.params[:batch_size] = batch_size + self.params[:random_seed] = random_seed self.params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(self.params[:random_seed]) end # Fit the model with given training data. # - # @param x [NMatrix] (shape: [n_samples, n_features]) The training data to be used for fitting the model. - # @param y [NMatrix] (shape: [1, n_samples]) The categorical variables (e.g. labels) + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. + # @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels) # to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) # Generate binary labels. - negative_label = y.uniq.sort.shift - bin_y = y.to_flat_a.map { |l| l != negative_label ? 1 : 0 } + negative_label = y.to_a.uniq.sort.shift + bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } # Expand feature vectors for bias term. samples = x - samples = samples.hconcat(NMatrix.ones([x.shape[0], 1]) * params[:bias_scale]) if params[:fit_bias] + if params[:fit_bias] + samples = Numo::NArray.hstack( + [samples, Numo::DFloat.ones([x.shape[0], 1]) * params[:bias_scale]] + ) + end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) - weight_vec = NMatrix.zeros([1, n_features]) + weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. eta = 1.0 / (params[:reg_param] * (t + 1)) - mean_vec = NMatrix.zeros([1, n_features]) + mean_vec = Numo::DFloat.zeros(n_features) subset_ids.each do |n| - z = weight_vec.dot(samples.row(n).transpose)[0] + z = weight_vec.dot(samples[n, true]) coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) - mean_vec += samples.row(n) * coef + mean_vec += samples[n, true] * coef end mean_vec *= eta / params[:batch_size] weight_vec = weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec # scale the weight vector. - scaler = (1.0 / params[:reg_param]**0.5) / weight_vec.norm2 + norm = Math.sqrt(weight_vec.dot(weight_vec)) + scaler = (1.0 / params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. if params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @@ -109,54 +117,54 @@ self end # Calculate confidence scores for samples. # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to compute the scores. - # @return [NMatrix] (shape: [1, n_samples]) Confidence score per sample. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. + # @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample. def decision_function(x) - w = ((@weight_vec.dot(x.transpose) + @bias_term) * -1.0).exp + 1.0 + w = Numo::NMath.exp(((@weight_vec.dot(x.transpose) + @bias_term) * -1.0)) + 1.0 w.map { |v| 1.0 / v } end # Predict class labels for samples. # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to predict the labels. - # @return [NMatrix] (shape: [1, n_samples]) Predicted class label per sample. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. + # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - decision_function(x).map { |v| v >= 0.5 ? 1 : -1 } + Numo::Int32.cast(decision_function(x).map { |v| v >= 0.5 ? 1 : -1 }) end # Predict probability for samples. # - # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to predict the probailities. - # @return [NMatrix] (shape: [1, n_samples]) Predicted probability per sample. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. + # @return [Numo::DFloat] (shape: [n_samples]) Predicted probability per sample. def predict_proba(x) decision_function(x) end # Claculate the mean accuracy of the given testing data. # - # @param x [NMatrix] (shape: [n_samples, n_features]) Testing data. - # @param y [NMatrix] (shape: [1, n_samples]) True labels for testing data. + # @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data. + # @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data. # @return [Float] Mean accuracy def score(x, y) p = predict(x) - n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) + n_hits = (y.to_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) n_hits / y.size.to_f end # Dump marshal data. # @return [Hash] The marshal data about LogisticRegression. def marshal_dump - { params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), bias_term: @bias_term, rng: @rng } + { params: params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) self.params = obj[:params] - @weight_vec = Utils.restore_nmatrix(obj[:weight_vec]) + @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end end