lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.1.1 vs lib/svmkit/linear_model/logistic_regression.rb in svmkit-0.1.2

- old
+ new

@@ -2,159 +2,161 @@ require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel - # LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. - # Note that the Logistic Regression of SVMKit performs as a binary classifier. + # LogisticRegression is a class that implements Logistic Regression + # with stochastic gradient descent (SGD) optimization. + # Note that the class performs as a binary classifier. # + # @example # estimator = # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # - # * *Reference*: - # - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. - # + # *Reference* + # 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. class LogisticRegression include Base::BaseEstimator include Base::Classifier - DEFAULT_PARAMS = { # :nodoc: + # @!visibility private + DEFAULT_PARAMS = { reg_param: 1.0, + fit_bias: false, + bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil }.freeze - # The weight vector for Logistic Regression. + # Return the weight vector for Logistic Regression. + # @return [NMatrix] (shape: [1, n_features]) attr_reader :weight_vec - # The random generator for performing random sampling in the SGD optimization. + # Return the bias term (a.k.a. intercept) for Logistic Regression. + # @return [Float] + attr_reader :bias_term + + # Return the random generator for transformation. + # @return [Random] attr_reader :rng # Create a new classifier with Logisitc Regression by the SGD optimization. # - # :call-seq: - # new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> LogisiticRegression + # @overload new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> LogisiticRegression # - # * *Arguments* : - # - +:reg_param+ (Float) (defaults to: 1.0) -- The regularization parameter. - # - +:max_iter+ (Integer) (defaults to: 100) -- The maximum number of iterations. - # - +:batch_size+ (Integer) (defaults to: 50) -- The size of the mini batches. - # - +:random_seed+ (Integer) (defaults to: nil) -- The seed value using to initialize the random generator. + # @param reg_param [Float] (defaults to: 1.0) The regularization parameter. + # @param fit_bias [Boolean] (defaults to: false) The flag indicating whether to fit the bias term. + # @param bias_scale [Float] (defaults to: 1.0) The scale of the bias term. + # If fit_bias is true, the feature vector v becoms [v; bias_scale]. + # @param max_iter [Integer] (defaults to: 100) The maximum number of iterations. + # @param batch_size [Integer] (defaults to: 50) The size of the mini batches. + # @param random_seed [Integer] (defaults to: nil) The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @weight_vec = nil + @bias_term = 0.0 @rng = Random.new(self.params[:random_seed]) end # Fit the model with given training data. # - # :call-seq: - # fit(x, y) -> LogisticRegression - # - # * *Arguments* : - # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model. - # - +y+ (NMatrix, shape: [1, n_samples]) -- The categorical variables (e.g. labels) to be used for fitting the model. - # * *Returns* : - # - The learned classifier itself. + # @param x [NMatrix] (shape: [n_samples, n_features]) The training data to be used for fitting the model. + # @param y [NMatrix] (shape: [1, n_samples]) The categorical variables (e.g. labels) + # to be used for fitting the model. + # @return [LogisticRegression] The learned classifier itself. def fit(x, y) - # Generate binary labels + # Generate binary labels. negative_label = y.uniq.sort.shift bin_y = y.to_flat_a.map { |l| l != negative_label ? 1 : 0 } + # Expand feature vectors for bias term. + samples = x + samples = samples.hconcat(NMatrix.ones([x.shape[0], 1]) * params[:bias_scale]) if params[:fit_bias] # Initialize some variables. - n_samples, n_features = x.shape + n_samples, n_features = samples.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) - @weight_vec = NMatrix.zeros([1, n_features]) + weight_vec = NMatrix.zeros([1, n_features]) # Start optimization. params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. eta = 1.0 / (params[:reg_param] * (t + 1)) mean_vec = NMatrix.zeros([1, n_features]) subset_ids.each do |n| - z = @weight_vec.dot(x.row(n).transpose)[0] + z = weight_vec.dot(samples.row(n).transpose)[0] coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) - mean_vec += x.row(n) * coef + mean_vec += samples.row(n) * coef end mean_vec *= eta / params[:batch_size] - @weight_vec = @weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec + weight_vec = weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec # scale the weight vector. - scaler = (1.0 / params[:reg_param]**0.5) / @weight_vec.norm2 - @weight_vec *= [1.0, scaler].min + scaler = (1.0 / params[:reg_param]**0.5) / weight_vec.norm2 + weight_vec *= [1.0, scaler].min end + # Store the learned model. + if params[:fit_bias] + @weight_vec = weight_vec[0...n_features - 1] + @bias_term = weight_vec[n_features - 1] + else + @weight_vec = weight_vec[0...n_features] + @bias_term = 0.0 + end self end # Calculate confidence scores for samples. # - # :call-seq: - # decision_function(x) -> NMatrix, shape: [1, n_samples] - # - # * *Arguments* : - # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to compute the scores. - # * *Returns* : - # - Confidence score per sample. + # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to compute the scores. + # @return [NMatrix] (shape: [1, n_samples]) Confidence score per sample. def decision_function(x) - w = (@weight_vec.dot(x.transpose) * -1.0).exp + 1.0 + w = ((@weight_vec.dot(x.transpose) + @bias_term) * -1.0).exp + 1.0 w.map { |v| 1.0 / v } end # Predict class labels for samples. # - # :call-seq: - # predict(x) -> NMatrix, shape: [1, n_samples] - # - # * *Arguments* : - # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to predict the labels. - # * *Returns* : - # - Predicted class label per sample. + # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to predict the labels. + # @return [NMatrix] (shape: [1, n_samples]) Predicted class label per sample. def predict(x) decision_function(x).map { |v| v >= 0.5 ? 1 : -1 } end # Predict probability for samples. # - # :call-seq: - # predict_proba(x) -> NMatrix, shape: [1, n_samples] - # - # * *Arguments* : - # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to predict the probailities. - # * *Returns* : - # - Predicted probability per sample. + # @param x [NMatrix] (shape: [n_samples, n_features]) The samples to predict the probailities. + # @return [NMatrix] (shape: [1, n_samples]) Predicted probability per sample. def predict_proba(x) decision_function(x) end # Claculate the mean accuracy of the given testing data. # - # :call-seq: - # score(x, y) -> Float - # - # * *Arguments* : - # - +x+ (NMatrix, shape: [n_samples, n_features]) -- Testing data. - # - +y+ (NMatrix, shape: [1, n_samples]) -- True labels for testing data. - # * *Returns* : - # - Mean accuracy + # @param x [NMatrix] (shape: [n_samples, n_features]) Testing data. + # @param y [NMatrix] (shape: [1, n_samples]) True labels for testing data. + # @return [Float] Mean accuracy def score(x, y) p = predict(x) n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) n_hits / y.size.to_f end - # Serializes object through Marshal#dump. - def marshal_dump # :nodoc: - { params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), rng: @rng } + # Dump marshal data. + # @return [Hash] The marshal data about LogisticRegression. + def marshal_dump + { params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), bias_term: @bias_term, rng: @rng } end - # Deserialize object through Marshal#load. - def marshal_load(obj) # :nodoc: + # Load marshal data. + # @return [nil] + def marshal_load(obj) self.params = obj[:params] @weight_vec = Utils.restore_nmatrix(obj[:weight_vec]) + @bias_term = obj[:bias_term] @rng = obj[:rng] nil end end end