lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.2.7 vs lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.2.8

- old
+ new

@@ -35,28 +35,34 @@ # # @param gamma [Float] The parameter of RBF kernel: exp(-gamma * x^2). # @param n_components [Integer] The number of dimensions of the RBF kernel feature space. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(gamma: 1.0, n_components: 128, random_seed: nil) + SVMKit::Validation.check_params_float(gamma: gamma) + SVMKit::Validation.check_params_integer(n_components: n_components) + SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) + @params = {} @params[:gamma] = gamma @params[:n_components] = n_components @params[:random_seed] = random_seed @params[:random_seed] ||= srand - @rng = Random.new(@params[:random_seed]) @random_mat = nil @random_vec = nil + @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @overload fit(x) -> RBF # # @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # This method uses only the number of features of the data. # @return [RBF] The learned transformer itself. def fit(x, _y = nil) + SVMKit::Validation.check_sample_array(x) + n_features = x.shape[1] @params[:n_components] = 2 * n_features if @params[:n_components] <= 0 @random_mat = rand_normal([n_features, @params[:n_components]]) * (2.0 * @params[:gamma])**0.5 n_half_components = @params[:n_components] / 2 @random_vec = Numo::DFloat.zeros(@params[:n_components] - n_half_components).concatenate( @@ -70,19 +76,23 @@ # @overload fit_transform(x) -> Numo::DFloat # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data def fit_transform(x, _y = nil) + SVMKit::Validation.check_sample_array(x) + fit(x).transform(x) end # Transform the given data with the learned model. # # @overload transform(x) -> Numo::DFloat # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model. # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data. def transform(x) + SVMKit::Validation.check_sample_array(x) + n_samples, = x.shape projection = x.dot(@random_mat) + @random_vec.tile(n_samples, 1) Numo::NMath.sin(projection) * ((2.0 / @params[:n_components])**0.5) end