lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.2.0 vs lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.2.1
- old
+ new
@@ -33,16 +33,16 @@
#
# @param gamma [Float] The parameter of RBF kernel: exp(-gamma * x^2).
# @param n_components [Integer] The number of dimensions of the RBF kernel feature space.
# @param random_seed [Integer] The seed value using to initialize the random generator.
def initialize(gamma: 1.0, n_components: 128, random_seed: nil)
- self.params = {}
- self.params[:gamma] = gamma
- self.params[:n_components] = n_components
- self.params[:random_seed] = random_seed
- self.params[:random_seed] ||= srand
- @rng = Random.new(self.params[:random_seed])
+ @params = {}
+ @params[:gamma] = gamma
+ @params[:n_components] = n_components
+ @params[:random_seed] = random_seed
+ @params[:random_seed] ||= srand
+ @rng = Random.new(@params[:random_seed])
@random_mat = nil
@random_vec = nil
end
# Fit the model with given training data.
@@ -52,14 +52,14 @@
# @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# This method uses only the number of features of the data.
# @return [RBF] The learned transformer itself.
def fit(x, _y = nil)
n_features = x.shape[1]
- params[:n_components] = 2 * n_features if params[:n_components] <= 0
- @random_mat = rand_normal([n_features, params[:n_components]]) * (2.0 * params[:gamma])**0.5
- n_half_components = params[:n_components] / 2
- @random_vec = Numo::DFloat.zeros(params[:n_components] - n_half_components).concatenate(
+ @params[:n_components] = 2 * n_features if @params[:n_components] <= 0
+ @random_mat = rand_normal([n_features, @params[:n_components]]) * (2.0 * @params[:gamma])**0.5
+ n_half_components = @params[:n_components] / 2
+ @random_vec = Numo::DFloat.zeros(@params[:n_components] - n_half_components).concatenate(
Numo::DFloat.ones(n_half_components) * (0.5 * Math::PI)
)
self
end
@@ -80,25 +80,25 @@
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
def transform(x)
n_samples, = x.shape
projection = x.dot(@random_mat) + @random_vec.tile(n_samples, 1)
- Numo::NMath.sin(projection) * ((2.0 / params[:n_components])**0.5)
+ Numo::NMath.sin(projection) * ((2.0 / @params[:n_components])**0.5)
end
# Dump marshal data.
# @return [Hash] The marshal data about RBF.
def marshal_dump
- { params: params,
+ { params: @params,
random_mat: @random_mat,
random_vec: @random_vec,
rng: @rng }
end
# Load marshal data.
# @return [nil]
def marshal_load(obj)
- self.params = obj[:params]
+ @params = obj[:params]
@random_mat = obj[:random_mat]
@random_vec = obj[:random_vec]
@rng = obj[:rng]
nil
end