lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.1.3 vs lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.2.0
- old
+ new
@@ -15,116 +15,109 @@
# 1. A. Rahimi and B. Recht, "Random Features for Large-Scale Kernel Machines," Proc. NIPS'07, pp.1177--1184, 2007.
class RBF
include Base::BaseEstimator
include Base::Transformer
- # @!visibility private
- DEFAULT_PARAMS = {
- gamma: 1.0,
- n_components: 128,
- random_seed: nil
- }.freeze
-
# Return the random matrix for transformation.
- # @return [NMatrix] (shape: [n_features, n_components])
+ # @return [Numo::DFloat] (shape: [n_features, n_components])
attr_reader :random_mat
# Return the random vector for transformation.
- # @return [NMatrix] (shape: [1, n_components])
+ # @return [Numo::DFloat] (shape: [n_components])
attr_reader :random_vec
# Return the random generator for transformation.
# @return [Random]
attr_reader :rng
# Create a new transformer for mapping to RBF kernel feature space.
#
- # @overload new(gamma: 1.0, n_components: 128, random_seed: 1) -> RBF
- #
- # @param params [Hash] The parameters for RBF kernel approximation.
- # @option params [Float] :gamma (1.0) The parameter of RBF kernel: exp(-gamma * x^2).
- # @option params [Integer] :n_components (128) The number of dimensions of the RBF kernel feature space.
- # @option params [Integer] :random_seed (nil) The seed value using to initialize the random generator.
- def initialize(params = {})
- self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
+ # @param gamma [Float] The parameter of RBF kernel: exp(-gamma * x^2).
+ # @param n_components [Integer] The number of dimensions of the RBF kernel feature space.
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
+ def initialize(gamma: 1.0, n_components: 128, random_seed: nil)
+ self.params = {}
+ self.params[:gamma] = gamma
+ self.params[:n_components] = n_components
+ self.params[:random_seed] = random_seed
self.params[:random_seed] ||= srand
@rng = Random.new(self.params[:random_seed])
@random_mat = nil
@random_vec = nil
end
# Fit the model with given training data.
#
# @overload fit(x) -> RBF
#
- # @param x [NMatrix] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
+ # @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# This method uses only the number of features of the data.
# @return [RBF] The learned transformer itself.
def fit(x, _y = nil)
n_features = x.shape[1]
params[:n_components] = 2 * n_features if params[:n_components] <= 0
@random_mat = rand_normal([n_features, params[:n_components]]) * (2.0 * params[:gamma])**0.5
n_half_components = params[:n_components] / 2
- @random_vec = NMatrix.zeros([1, params[:n_components] - n_half_components]).hconcat(
- NMatrix.ones([1, n_half_components]) * (0.5 * Math::PI)
+ @random_vec = Numo::DFloat.zeros(params[:n_components] - n_half_components).concatenate(
+ Numo::DFloat.ones(n_half_components) * (0.5 * Math::PI)
)
self
end
# Fit the model with training data, and then transform them with the learned model.
#
- # @overload fit_transform(x) -> NMatrix
+ # @overload fit_transform(x) -> Numo::DFloat
#
- # @param x [NMatrix] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
- # @return [NMatrix] (shape: [n_samples, n_components]) The transformed data
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
def fit_transform(x, _y = nil)
fit(x).transform(x)
end
# Transform the given data with the learned model.
#
- # @overload transform(x) -> NMatrix
+ # @overload transform(x) -> Numo::DFloat
#
- # @param x [NMatrix] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
- # @return [NMatrix] (shape: [n_samples, n_components]) The transformed data.
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
+ # @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
def transform(x)
n_samples, = x.shape
- projection = x.dot(@random_mat) + @random_vec.repeat(n_samples, 0)
- projection.sin * ((2.0 / params[:n_components])**0.5)
+ projection = x.dot(@random_mat) + @random_vec.tile(n_samples, 1)
+ Numo::NMath.sin(projection) * ((2.0 / params[:n_components])**0.5)
end
# Dump marshal data.
# @return [Hash] The marshal data about RBF.
def marshal_dump
{ params: params,
- random_mat: Utils.dump_nmatrix(@random_mat),
- random_vec: Utils.dump_nmatrix(@random_vec),
+ random_mat: @random_mat,
+ random_vec: @random_vec,
rng: @rng }
end
# Load marshal data.
# @return [nil]
def marshal_load(obj)
self.params = obj[:params]
- @random_mat = Utils.restore_nmatrix(obj[:random_mat])
- @random_vec = Utils.restore_nmatrix(obj[:random_vec])
+ @random_mat = obj[:random_mat]
+ @random_vec = obj[:random_vec]
@rng = obj[:rng]
nil
end
protected
# Generate the uniform random matrix with the given shape.
def rand_uniform(shape)
- rnd_vals = Array.new(NMatrix.size(shape)) { @rng.rand }
- NMatrix.new(shape, rnd_vals, dtype: :float64, stype: :dense)
+ rnd_vals = Array.new(shape.inject(:*)) { @rng.rand }
+ Numo::DFloat.asarray(rnd_vals).reshape(shape[0], shape[1])
end
# Generate the normal random matrix with the given shape, mean, and standard deviation.
def rand_normal(shape, mu = 0.0, sigma = 1.0)
a = rand_uniform(shape)
b = rand_uniform(shape)
- ((a.log * -2.0).sqrt * (b * 2.0 * Math::PI).sin) * sigma + mu
+ (Numo::NMath.sqrt(Numo::NMath.log(a) * -2.0) * Numo::NMath.sin(b * 2.0 * Math::PI)) * sigma + mu
end
end
end
end