lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.1.2 vs lib/svmkit/kernel_approximation/rbf.rb in svmkit-0.1.3

- old
+ new

@@ -38,12 +38,13 @@ # Create a new transformer for mapping to RBF kernel feature space. # # @overload new(gamma: 1.0, n_components: 128, random_seed: 1) -> RBF # - # @param gamma [Float] (defaults to: 1.0) The parameter of RBF kernel: exp(-gamma * x^2). - # @param n_components [Integer] (defaults to: 128) The number of dimensions of the RBF kernel feature space. - # @param random_seed [Integer] (defaults to: nil) The seed value using to initialize the random generator. + # @param params [Hash] The parameters for RBF kernel approximation. + # @option params [Float] :gamma (1.0) The parameter of RBF kernel: exp(-gamma * x^2). + # @option params [Integer] :n_components (128) The number of dimensions of the RBF kernel feature space. + # @option params [Integer] :random_seed (nil) The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @rng = Random.new(self.params[:random_seed]) @random_mat = nil