lib/svmkit/ensemble/random_forest_classifier.rb in svmkit-0.7.0 vs lib/svmkit/ensemble/random_forest_classifier.rb in svmkit-0.7.1

- old
+ new

@@ -1,8 +1,9 @@ # frozen_string_literal: true require 'svmkit/validation' +require 'svmkit/values' require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' require 'svmkit/tree/decision_tree_classifier' module SVMKit @@ -18,10 +19,11 @@ # results = estimator.predict(testing_samples) # class RandomForestClassifier include Base::BaseEstimator include Base::Classifier + include Validation # Return the set of estimators. # @return [Array<DecisionTreeClassifier>] attr_reader :estimators @@ -48,19 +50,20 @@ # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. - def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, + def initialize(n_estimators: 10, + criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) - SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, - max_features: max_features, random_seed: random_seed) - SVMKit::Validation.check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf) - SVMKit::Validation.check_params_string(criterion: criterion) - SVMKit::Validation.check_params_positive(n_estimators: n_estimators, max_depth: max_depth, - max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, - max_features: max_features) + check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, + max_features: max_features, random_seed: random_seed) + check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf) + check_params_string(criterion: criterion) + check_params_positive(n_estimators: n_estimators, max_depth: max_depth, + max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, + max_features: max_features) @params = {} @params[:n_estimators] = n_estimators @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @@ -78,13 +81,13 @@ # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [RandomForestClassifier] The learned classifier itself. def fit(x, y) - SVMKit::Validation.check_sample_array(x) - SVMKit::Validation.check_label_array(y) - SVMKit::Validation.check_sample_label_size(x, y) + check_sample_array(x) + check_label_array(y) + check_sample_label_size(x, y) # Initialize some variables. n_samples, n_features = x.shape @params[:max_features] = Math.sqrt(n_features).to_i unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, n_features].min @classes = Numo::Int32.asarray(y.to_a.uniq.sort) @@ -92,11 +95,11 @@ # Construct forest. @estimators = Array.new(@params[:n_estimators]) do tree = Tree::DecisionTreeClassifier.new( criterion: @params[:criterion], max_depth: @params[:max_depth], max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf], - max_features: @params[:max_features], random_seed: @rng.rand(int_max) + max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values::int_max) ) bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) } tree.fit(x[bootstrap_ids, true], y[bootstrap_ids]) @feature_importances += tree.feature_importances tree @@ -108,11 +111,11 @@ # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - SVMKit::Validation.check_sample_array(x) + check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| @@ -128,11 +131,11 @@ # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) - SVMKit::Validation.check_sample_array(x) + check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| @@ -148,11 +151,11 @@ # Return the index of the leaf that each sample reached. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample. def apply(x) - SVMKit::Validation.check_sample_array(x) + check_sample_array(x) Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose end # Dump marshal data. # @return [Hash] The marshal data about RandomForestClassifier. @@ -171,15 +174,9 @@ @estimators = obj[:estimators] @classes = obj[:classes] @feature_importances = obj[:feature_importances] @rng = obj[:rng] nil - end - - private - - def int_max - @int_max ||= 2**([42].pack('i').size * 16 - 2) - 1 end end end end