lib/svmkit/ensemble/random_forest_classifier.rb in svmkit-0.2.7 vs lib/svmkit/ensemble/random_forest_classifier.rb in svmkit-0.2.8

- old
+ new

@@ -48,31 +48,38 @@ # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) + SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, + max_features: max_features, random_seed: random_seed) + SVMKit::Validation.check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf) + SVMKit::Validation.check_params_string(criterion: criterion) + @params = {} @params[:n_estimators] = n_estimators @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @params[:min_samples_leaf] = min_samples_leaf @params[:max_features] = max_features @params[:random_seed] = random_seed @params[:random_seed] ||= srand - @rng = Random.new(@params[:random_seed]) @estimators = nil @classes = nil @feature_importances = nil + @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [RandomForestClassifier] The learned classifier itself. def fit(x, y) + SVMKit::Validation.check_sample_array(x) + SVMKit::Validation.check_label_array(y) # Initialize some variables. n_samples, n_features = x.shape @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, Math.sqrt(n_features).to_i].min @classes = Numo::Int32.asarray(y.to_a.uniq.sort) @@ -96,10 +103,11 @@ # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) + SVMKit::Validation.check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| @@ -115,10 +123,11 @@ # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) + SVMKit::Validation.check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| @@ -134,9 +143,10 @@ # Return the index of the leaf that each sample reached. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample. def apply(x) + SVMKit::Validation.check_sample_array(x) Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose end # Dump marshal data. # @return [Hash] The marshal data about RandomForestClassifier