lib/svmkit/ensemble/ada_boost_classifier.rb in svmkit-0.7.2 vs lib/svmkit/ensemble/ada_boost_classifier.rb in svmkit-0.7.3
- old
+ new
@@ -107,10 +107,10 @@
ids = SVMKit::Utils.choice_ids(n_samples, observation_weights, @rng)
break if y[ids].to_a.uniq.size != n_classes
tree = Tree::DecisionTreeClassifier.new(
criterion: @params[:criterion], max_depth: @params[:max_depth],
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
- max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values::int_max)
+ max_features: @params[:max_features], random_seed: @rng.rand(SVMKit::Values.int_max)
)
tree.fit(x[ids, true], y[ids])
# Calculate estimator error.
proba = tree.predict_proba(x).clip(1.0e-15, nil)
p = Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[proba[n, true].max_index] })