README.md in svmkit-0.7.1 vs README.md in svmkit-0.7.2

- old
+ new

@@ -122,9 +122,42 @@ # Output result. mean_logloss = report[:test_score].inject(:+) / kf.n_splits puts("5-CV mean log-loss: %.3f" % mean_logloss) ``` +### Example 3. Pipeline + +```ruby +require 'svmkit' + +# Load dataset. +samples, labels = SVMKit::Dataset.load_libsvm_file('pendigits') +samples = Numo::DFloat.cast(samples) + +# Construct pipeline with kernel approximation and SVC. +rbf = SVMKit::KernelApproximation::RBF.new(gamma: 0.0001, n_components: 800, random_seed: 1) +svc = SVMKit::LinearModel::SVC.new(reg_param: 0.0001, max_iter: 1000, random_seed: 1) +pipeline = SVMKit::Pipeline::Pipeline.new(steps: { trns: rbf, clsf: svc }) + +# Define the splitting strategy and cross validation. +kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 5, shuffle: true, random_seed: 1) +cv = SVMKit::ModelSelection::CrossValidation.new(estimator: pipeline, splitter: kf) + +# Perform 5-cross validation. +report = cv.perform(samples, labels) + +# Output result. +mean_accuracy = report[:test_score].inject(:+) / kf.n_splits +puts("5-CV mean accuracy: %.1f %%" % (mean_accuracy * 100.0)) +``` + +Execution of the above scripts result in the following. + +```bash +$ ruby pipeline.rb +5-CV mean accuracy: 99.2 % +``` + ## Development After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment. To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).