README.md in svmkit-0.1.1 vs README.md in svmkit-0.1.2
- old
+ new
@@ -1,7 +1,11 @@
# SVMKit
+[![Build Status](https://travis-ci.org/yoshoku/SVMKit.svg?branch=master)](https://travis-ci.org/yoshoku/SVMKit)
+[![Gem Version](https://badge.fury.io/rb/svmkit.svg)](https://badge.fury.io/rb/svmkit)
+[![BSD 2-Clause License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://github.com/yoshoku/SVMKit/blob/master/LICENSE.txt)
+
SVMKit is a library for machine learninig in Ruby.
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
However, since SVMKit is an experimental library, there are few machine learning algorithms implemented.
## Installation
@@ -21,10 +25,11 @@
$ gem install svmkit
## Usage
Training phase:
+
```ruby
require 'svmkit'
require 'libsvmloader'
samples, labels = LibSVMLoader.load_libsvm_file('pendigits', stype: :dense)
@@ -44,9 +49,10 @@
File.open('trained_transformer.dat', 'wb') { |f| f.write(Marshal.dump(transformer)) }
File.open('trained_classifier.dat', 'wb') { |f| f.write(Marshal.dump(classifier)) }
```
Testing phase:
+
```ruby
require 'svmkit'
require 'libsvmloader'
samples, labels = LibSVMLoader.load_libsvm_file('pendigits.t', stype: :dense)