README.md in svmkit-0.1.1 vs README.md in svmkit-0.1.2

- old
+ new

@@ -1,7 +1,11 @@ # SVMKit +[![Build Status](https://travis-ci.org/yoshoku/SVMKit.svg?branch=master)](https://travis-ci.org/yoshoku/SVMKit) +[![Gem Version](https://badge.fury.io/rb/svmkit.svg)](https://badge.fury.io/rb/svmkit) +[![BSD 2-Clause License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://github.com/yoshoku/SVMKit/blob/master/LICENSE.txt) + SVMKit is a library for machine learninig in Ruby. SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python. However, since SVMKit is an experimental library, there are few machine learning algorithms implemented. ## Installation @@ -21,10 +25,11 @@ $ gem install svmkit ## Usage Training phase: + ```ruby require 'svmkit' require 'libsvmloader' samples, labels = LibSVMLoader.load_libsvm_file('pendigits', stype: :dense) @@ -44,9 +49,10 @@ File.open('trained_transformer.dat', 'wb') { |f| f.write(Marshal.dump(transformer)) } File.open('trained_classifier.dat', 'wb') { |f| f.write(Marshal.dump(classifier)) } ``` Testing phase: + ```ruby require 'svmkit' require 'libsvmloader' samples, labels = LibSVMLoader.load_libsvm_file('pendigits.t', stype: :dense)