test/test_statistics.rb in statsample-1.5.0 vs test/test_statistics.rb in statsample-2.0.0
- old
+ new
@@ -30,11 +30,11 @@
assert(!'a10'.is_number?)
assert(!''.is_number?)
end
def test_estimation_mean
- v = ([42] * 23 + [41] * 4 + [36] * 1 + [32] * 1 + [29] * 1 + [27] * 2 + [23] * 1 + [19] * 1 + [16] * 2 + [15] * 2 + [14, 11, 10, 9, 7] + [6] * 3 + [5] * 2 + [4, 3]).to_vector(:numeric)
+ v = Daru::Vector.new([42] * 23 + [41] * 4 + [36] * 1 + [32] * 1 + [29] * 1 + [27] * 2 + [23] * 1 + [19] * 1 + [16] * 2 + [15] * 2 + [14, 11, 10, 9, 7] + [6] * 3 + [5] * 2 + [4, 3])
assert_equal(50, v.size)
assert_equal(1471, v.sum)
# limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
end
@@ -53,22 +53,12 @@
l = Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
assert_in_delta(0.28, l[0], 0.01)
assert_in_delta(0.46, l[1], 0.01)
end
- def test_ml
- if true
- # real=[1,1,1,1].to_vector(:numeric)
-
- # pred=[0.0001,0.0001,0.0001,0.0001].to_vector(:numeric)
- # puts Statsample::Bivariate.maximum_likehood_dichotomic(pred,real)
-
- end
- end
-
def test_simple_linear_regression
- a = [1, 2, 3, 4, 5, 6].to_vector(:numeric)
- b = [6, 2, 4, 10, 12, 8].to_vector(:numeric)
+ a = Daru::Vector.new([1, 2, 3, 4, 5, 6])
+ b = Daru::Vector.new([6, 2, 4, 10, 12, 8])
reg = Statsample::Regression::Simple.new_from_vectors(a, b)
assert_in_delta((reg.ssr + reg.sse).to_f, reg.sst, 0.001)
assert_in_delta(Statsample::Bivariate.pearson(a, b), reg.r, 0.001)
assert_in_delta(2.4, reg.a, 0.01)
assert_in_delta(1.314, reg.b, 0.001)