test/test_statistics.rb in statsample-0.3.4 vs test/test_statistics.rb in statsample-0.4.0

- old
+ new

@@ -62,11 +62,10 @@ end end #assert_equal(expected,obt) end def test_prop_pearson - if HAS_GSL assert_in_delta(0.42, Statsample::Bivariate.prop_pearson(Statsample::Bivariate.t_r(0.084,94), 94),0.01) assert_in_delta(0.65, Statsample::Bivariate.prop_pearson(Statsample::Bivariate.t_r(0.046,95), 95),0.01) r=0.9 n=100 t=Statsample::Bivariate.t_r(r,n) @@ -78,15 +77,10 @@ n=100 t=Statsample::Bivariate.t_r(r,n) assert(Statsample::Bivariate.prop_pearson(t,n,:both)<0.05) assert(Statsample::Bivariate.prop_pearson(t,n,:right)>0.05) assert(Statsample::Bivariate.prop_pearson(t,n,:left)<0.05) - - - else - puts "Bivariate.prop_pearson not tested (no ruby-gsl)" - end end def test_covariance if HAS_GSL v1=[6,5,4,7,8,4,3,2].to_vector(:scale) v2=[2,3,7,8,6,4,3,2].to_vector(:scale) @@ -128,15 +122,11 @@ end def test_estimation_mean v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale) assert_equal(50,v.size) assert_equal(1471,v.sum()) - if HAS_GSL limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80) - else - puts "SRS.mean_confidence_interval_z not tested (no ruby-gsl)" - end end def test_estimation_proportion # total pop=3042 sam=200 @@ -146,17 +136,12 @@ # confidence limits pop=500 sam=100 prop=0.37 a=0.95 - if HAS_GSL l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a) assert_in_delta(0.28,l[0],0.01) assert_in_delta(0.46,l[1],0.01) - else - puts "SRS.proportion_confidence_interval_z not tested (no ruby-gsl)" - - end end def test_ml if(true) real=[1,1,1,1].to_vector(:scale)