test/test_statistics.rb in statsample-0.3.4 vs test/test_statistics.rb in statsample-0.4.0
- old
+ new
@@ -62,11 +62,10 @@
end
end
#assert_equal(expected,obt)
end
def test_prop_pearson
- if HAS_GSL
assert_in_delta(0.42, Statsample::Bivariate.prop_pearson(Statsample::Bivariate.t_r(0.084,94), 94),0.01)
assert_in_delta(0.65, Statsample::Bivariate.prop_pearson(Statsample::Bivariate.t_r(0.046,95), 95),0.01)
r=0.9
n=100
t=Statsample::Bivariate.t_r(r,n)
@@ -78,15 +77,10 @@
n=100
t=Statsample::Bivariate.t_r(r,n)
assert(Statsample::Bivariate.prop_pearson(t,n,:both)<0.05)
assert(Statsample::Bivariate.prop_pearson(t,n,:right)>0.05)
assert(Statsample::Bivariate.prop_pearson(t,n,:left)<0.05)
-
-
- else
- puts "Bivariate.prop_pearson not tested (no ruby-gsl)"
- end
end
def test_covariance
if HAS_GSL
v1=[6,5,4,7,8,4,3,2].to_vector(:scale)
v2=[2,3,7,8,6,4,3,2].to_vector(:scale)
@@ -128,15 +122,11 @@
end
def test_estimation_mean
v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale)
assert_equal(50,v.size)
assert_equal(1471,v.sum())
- if HAS_GSL
limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
- else
- puts "SRS.mean_confidence_interval_z not tested (no ruby-gsl)"
- end
end
def test_estimation_proportion
# total
pop=3042
sam=200
@@ -146,17 +136,12 @@
# confidence limits
pop=500
sam=100
prop=0.37
a=0.95
- if HAS_GSL
l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
assert_in_delta(0.28,l[0],0.01)
assert_in_delta(0.46,l[1],0.01)
- else
- puts "SRS.proportion_confidence_interval_z not tested (no ruby-gsl)"
-
- end
end
def test_ml
if(true)
real=[1,1,1,1].to_vector(:scale)