test/test_reliability.rb in statsample-1.4.3 vs test/test_reliability.rb in statsample-1.5.0
- old
+ new
@@ -14,13 +14,13 @@
context "Cronbach's alpha" do
setup do
@samples = 40
@n_variables = rand(10) + 2
@ds = Statsample::Dataset.new
- base = @samples.times.collect { |_a| rand }.to_scale
+ base = @samples.times.collect { |_a| rand }.to_numeric
@n_variables.times do |i|
- @ds[i] = base.collect { |v| v + rand }.to_scale
+ @ds[i] = base.collect { |v| v + rand }.to_numeric
end
@ds.update_valid_data
@k = @ds.fields.size
@cm = Statsample::Bivariate.covariance_matrix(@ds)
@@ -65,25 +65,25 @@
context Statsample::Reliability::ItemCharacteristicCurve do
setup do
@samples = 100
@points = rand(10) + 3
@max_point = (@points - 1) * 3
- @x1 = @samples.times.map { rand(@points) }.to_scale
- @x2 = @samples.times.map { rand(@points) }.to_scale
- @x3 = @samples.times.map { rand(@points) }.to_scale
+ @x1 = @samples.times.map { rand(@points) }.to_numeric
+ @x2 = @samples.times.map { rand(@points) }.to_numeric
+ @x3 = @samples.times.map { rand(@points) }.to_numeric
@ds = { 'a' => @x1, 'b' => @x2, 'c' => @x3 }.to_dataset
@icc = Statsample::Reliability::ItemCharacteristicCurve.new(@ds)
end
should 'have a correct automatic vector_total' do
assert_equal(@ds.vector_sum, @icc.vector_total)
end
should 'have a correct different vector_total' do
- x2 = @samples.times.map { rand(10) }.to_scale
+ x2 = @samples.times.map { rand(10) }.to_numeric
@icc = Statsample::Reliability::ItemCharacteristicCurve.new(@ds, x2)
assert_equal(x2, @icc.vector_total)
assert_raises(ArgumentError) do
- inc = (@samples + 10).times.map { rand(10) }.to_scale
+ inc = (@samples + 10).times.map { rand(10) }.to_numeric
@icc = Statsample::Reliability::ItemCharacteristicCurve.new(@ds, inc)
end
end
should 'have 0% for 0 points on maximum value values' do
max = @icc.curve_field('a', 0)[@max_point.to_f]
@@ -117,11 +117,11 @@
@scales = 3
@items_per_scale = 10
h = {}
@scales.times {|s|
@items_per_scale.times {|i|
- h["#{s}_#{i}"] = (size.times.map { (s * 2) + rand }).to_scale
+ h["#{s}_#{i}"] = (size.times.map { (s * 2) + rand }).to_numeric
}
}
@ds = h.to_dataset
@msa = Statsample::Reliability::MultiScaleAnalysis.new(name: 'Multiple Analysis') do |m|
m.scale 'complete', @ds
@@ -175,22 +175,22 @@
assert(@msa.summary.size > 0)
end
end
context Statsample::Reliability::ScaleAnalysis do
setup do
- @x1 = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 30].to_scale
- @x2 = [1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 50].to_scale
- @x3 = [2, 2, 1, 1, 1, 2, 2, 2, 3, 4, 5, 40].to_scale
- @x4 = [1, 2, 3, 4, 4, 4, 4, 3, 4, 4, 5, 30].to_scale
+ @x1 = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 30].to_numeric
+ @x2 = [1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 50].to_numeric
+ @x3 = [2, 2, 1, 1, 1, 2, 2, 2, 3, 4, 5, 40].to_numeric
+ @x4 = [1, 2, 3, 4, 4, 4, 4, 3, 4, 4, 5, 30].to_numeric
@ds = { 'x1' => @x1, 'x2' => @x2, 'x3' => @x3, 'x4' => @x4 }.to_dataset
@ia = Statsample::Reliability::ScaleAnalysis.new(@ds)
@cov_matrix = @ia.cov_m
end
should 'return correct values for item analysis' do
assert_in_delta(0.980, @ia.alpha, 0.001)
assert_in_delta(0.999, @ia.alpha_standarized, 0.001)
- var_mean = 4.times.map { |m| @cov_matrix[m, m] }.to_scale.mean
+ var_mean = 4.times.map { |m| @cov_matrix[m, m] }.to_numeric.mean
assert_in_delta(var_mean, @ia.variances_mean)
assert_equal(@x1.mean, @ia.item_statistics['x1'][:mean])
assert_equal(@x4.mean, @ia.item_statistics['x4'][:mean])
assert_in_delta(@x1.sds, @ia.item_statistics['x1'][:sds], 1e-14)
assert_in_delta(@x4.sds, @ia.item_statistics['x4'][:sds], 1e-14)
@@ -209,10 +209,10 @@
if i != j
covariances.push(@cov_matrix[i, j])
end
}
}
- assert_in_delta(covariances.to_scale.mean, @ia.covariances_mean)
+ assert_in_delta(covariances.to_numeric.mean, @ia.covariances_mean)
assert_in_delta(0.999, @ia.item_total_correlation['x1'], 0.001)
assert_in_delta(1050.455, @ia.stats_if_deleted['x1'][:variance_sample], 0.001)
end
should 'return a summary' do
assert(@ia.summary.size > 0)