test/test_dominance_analysis.rb in statsample-1.4.1 vs test/test_dominance_analysis.rb in statsample-1.4.2
- old
+ new
@@ -1,41 +1,39 @@
-require(File.expand_path(File.dirname(__FILE__)+'/helpers_tests.rb'))
-class StatsampleDominanceAnalysisTestCase < MiniTest::Unit::TestCase
+require(File.expand_path(File.dirname(__FILE__) + '/helpers_tests.rb'))
+class StatsampleDominanceAnalysisTestCase < Minitest::Test
def test_dominance_univariate
# Example from Budescu (1993)
- m=Matrix[[1, 0.683, 0.154, 0.460, 0.618],[0.683, 1, -0.050, 0.297, 0.461], [0.154, -0.050, 1, 0.006, 0.262],[0.460, 0.297, 0.006, 1, 0.507],[0.618, 0.461, 0.262, 0.507, 1]]
+ m = Matrix[[1, 0.683, 0.154, 0.460, 0.618], [0.683, 1, -0.050, 0.297, 0.461], [0.154, -0.050, 1, 0.006, 0.262], [0.460, 0.297, 0.006, 1, 0.507], [0.618, 0.461, 0.262, 0.507, 1]]
m.extend Statsample::CovariateMatrix
- m.fields=%w{x1 x2 x3 x4 y}
- da=Statsample::DominanceAnalysis.new(m,'y')
+ m.fields = %w(x1 x2 x3 x4 y)
+ da = Statsample::DominanceAnalysis.new(m, 'y')
- contr_x1={'x2'=>0.003, 'x3'=>0.028, 'x4'=>0.063}
- contr_x1.each do |k,v|
+ contr_x1 = { 'x2' => 0.003, 'x3' => 0.028, 'x4' => 0.063 }
+ contr_x1.each do |k, v|
assert_in_delta(v, da.models_data[['x1']].contributions[k], 0.001)
end
- assert_in_delta(0.052, da.models_data[['x2','x3','x4']].contributions['x1'], 0.001)
- expected_dominances=[1, 1, 0.5, 0.5, 0,0]
- expected_g_dominances=[1, 1, 1, 1, 0,0]
+ assert_in_delta(0.052, da.models_data[%w(x2 x3 x4)].contributions['x1'], 0.001)
+ expected_dominances = [1, 1, 0.5, 0.5, 0, 0]
+ expected_g_dominances = [1, 1, 1, 1, 0, 0]
- da.pairs.each_with_index do |a,i|
- assert_equal(expected_dominances[i], da.total_dominance_pairwise(a[0],a[1]))
- assert_equal(expected_dominances[i], da.conditional_dominance_pairwise(a[0],a[1]))
- assert_equal(expected_g_dominances[i], da.general_dominance_pairwise(a[0],a[1]))
+ da.pairs.each_with_index do |a, i|
+ assert_equal(expected_dominances[i], da.total_dominance_pairwise(a[0], a[1]))
+ assert_equal(expected_dominances[i], da.conditional_dominance_pairwise(a[0], a[1]))
+ assert_equal(expected_g_dominances[i], da.general_dominance_pairwise(a[0], a[1]))
end
- assert(da.summary.size>0)
+ assert(da.summary.size > 0)
end
+
def test_dominance_multivariate
- m=Matrix[[1.0, -0.19, -0.358, -0.343, 0.359, 0.257], [-0.19, 1.0, 0.26, 0.29, -0.11, -0.11], [-0.358, 0.26, 1.0, 0.54, -0.49, -0.23], [-0.343, 0.29, 0.54, 1.0, -0.22, -0.41], [0.359, -0.11, -0.49, -0.22, 1.0, 0.62], [0.257, -0.11, -0.23, -0.41, 0.62, 1]]
+ m = Matrix[[1.0, -0.19, -0.358, -0.343, 0.359, 0.257], [-0.19, 1.0, 0.26, 0.29, -0.11, -0.11], [-0.358, 0.26, 1.0, 0.54, -0.49, -0.23], [-0.343, 0.29, 0.54, 1.0, -0.22, -0.41], [0.359, -0.11, -0.49, -0.22, 1.0, 0.62], [0.257, -0.11, -0.23, -0.41, 0.62, 1]]
m.extend Statsample::CovariateMatrix
- m.fields=%w{y1 y2 x1 x2 x3 x4}
- m2=m.submatrix(%w{y1 x1 x2 x3 x4})
+ m.fields = %w(y1 y2 x1 x2 x3 x4)
+ m2 = m.submatrix(%w(y1 x1 x2 x3 x4))
+ da = Statsample::DominanceAnalysis.new(m, %w(y1 y2), cases: 683, method_association: :p2yx)
- da=Statsample::DominanceAnalysis.new(m, ['y1','y2'], :cases=>683, :method_association=>:p2yx)
-
- contr_x1={'x2'=>0.027, 'x3'=>0.024, 'x4'=>0.017}
- contr_x1.each do |k,v|
+ contr_x1 = { 'x2' => 0.027, 'x3' => 0.024, 'x4' => 0.017 }
+ contr_x1.each do |k, v|
assert_in_delta(v, da.models_data[['x1']].contributions[k], 0.003)
end
-
-
end
end