lib/statsample/regression.rb in statsample-1.3.1 vs lib/statsample/regression.rb in statsample-1.4.0

- old
+ new

@@ -3,14 +3,10 @@ require 'statsample/regression/multiple/matrixengine' require 'statsample/regression/multiple/rubyengine' require 'statsample/regression/multiple/gslengine' -require 'statsample/regression/binomial' -require 'statsample/regression/binomial/logit' -require 'statsample/regression/binomial/probit' - module Statsample # = Module for regression procedures. # Use the method on this class to generate # analysis. # If you need more control, you can @@ -39,31 +35,9 @@ # sr.r # => 0.999987881153254 def self.simple(x,y) Statsample::Regression::Simple.new_from_vectors(x,y) end - # Create a Binomial::Logit object, for logit regression. - # * ds:: Dataset - # * y:: Name of dependent vector - # <b>Usage</b> - # dataset=Statsample::CSV.read("data.csv") - # lr=Statsample::Regression.logit(dataset,'y') - # - def self.logit(ds,y_var) - Statsample::Regression::Binomial::Logit.new(ds,y_var) - end - # Create a Binomial::Probit object, for probit regression - # * ds:: Dataset - # * y:: Name of dependent vector - # <b>Usage</b> - # dataset=Statsample::CSV.read("data.csv") - # lr=Statsample::Regression.probit(dataset,'y') - # - - def self.probit(ds,y_var) - Statsample::Regression::Binomial::Probit.new(ds,y_var) - end - # Creates one of the Statsample::Regression::Multiple object, # for OLS multiple regression. # Parameters: # * <tt>ds</tt>: Dataset.