lib/statsample/regression.rb in statsample-1.3.1 vs lib/statsample/regression.rb in statsample-1.4.0
- old
+ new
@@ -3,14 +3,10 @@
require 'statsample/regression/multiple/matrixengine'
require 'statsample/regression/multiple/rubyengine'
require 'statsample/regression/multiple/gslengine'
-require 'statsample/regression/binomial'
-require 'statsample/regression/binomial/logit'
-require 'statsample/regression/binomial/probit'
-
module Statsample
# = Module for regression procedures.
# Use the method on this class to generate
# analysis.
# If you need more control, you can
@@ -39,31 +35,9 @@
# sr.r
# => 0.999987881153254
def self.simple(x,y)
Statsample::Regression::Simple.new_from_vectors(x,y)
end
- # Create a Binomial::Logit object, for logit regression.
- # * ds:: Dataset
- # * y:: Name of dependent vector
- # <b>Usage</b>
- # dataset=Statsample::CSV.read("data.csv")
- # lr=Statsample::Regression.logit(dataset,'y')
- #
- def self.logit(ds,y_var)
- Statsample::Regression::Binomial::Logit.new(ds,y_var)
- end
- # Create a Binomial::Probit object, for probit regression
- # * ds:: Dataset
- # * y:: Name of dependent vector
- # <b>Usage</b>
- # dataset=Statsample::CSV.read("data.csv")
- # lr=Statsample::Regression.probit(dataset,'y')
- #
-
- def self.probit(ds,y_var)
- Statsample::Regression::Binomial::Probit.new(ds,y_var)
- end
-
# Creates one of the Statsample::Regression::Multiple object,
# for OLS multiple regression.
# Parameters:
# * <tt>ds</tt>: Dataset.