lib/statsample/factor/pca.rb in statsample-1.4.3 vs lib/statsample/factor/pca.rb in statsample-1.5.0
- old
+ new
@@ -11,11 +11,11 @@
# eigenvector could have negative values!
# For Principal Axis Analysis, use Statsample::Factor::PrincipalAxis
#
# == Usage:
# require 'statsample'
- # a=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2.0, 1.0, 1.5, 1.1].to_scale
- # b=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9].to_scale
+ # a=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2.0, 1.0, 1.5, 1.1].to_numeric
+ # b=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9].to_numeric
# ds={'a'=>a,'b'=>b}.to_dataset
# cor_matrix=Statsample::Bivariate.correlation_matrix(ds)
# pca=Statsample::Factor::PCA.new(cor_matrix)
# pca.m
# => 1