vendor/scs/src/cones.c in scs-0.3.1 vs vendor/scs/src/cones.c in scs-0.3.2
- old
+ new
@@ -8,59 +8,65 @@
#define CONE_THRESH (1e-8)
#define EXP_CONE_MAX_ITERS (100)
#define BOX_CONE_MAX_ITERS (25)
#define POW_CONE_MAX_ITERS (20)
-/* In the box cone projection we penalize the `t` term additionally by this
- * factor. This encourages the `t` term to stay close to the incoming `t` term,
- * which should provide better convergence since typically the `t` term does
- * not appear in the linear system other than `t = 1`. Setting to 1 is
- * the vanilla projection.
- */
-#define BOX_T_SCALE (1.)
-
/* Box cone limits (+ or -) taken to be INF */
#define MAX_BOX_VAL (1e15)
#ifdef USE_LAPACK
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
void BLAS(syev)(const char *jobz, const char *uplo, blas_int *n, scs_float *a,
blas_int *lda, scs_float *w, scs_float *work, blas_int *lwork,
blas_int *info);
blas_int BLAS(syrk)(const char *uplo, const char *trans, const blas_int *n,
const blas_int *k, const scs_float *alpha,
const scs_float *a, const blas_int *lda,
const scs_float *beta, scs_float *c, const blas_int *ldc);
void BLAS(scal)(const blas_int *n, const scs_float *sa, scs_float *sx,
const blas_int *incx);
+
+#ifdef __cplusplus
+}
#endif
+#endif
+
/* set the vector of rho y terms, based on scale and cones */
-void SCS(set_rho_y_vec)(const ScsCone *k, scs_float scale, scs_float *rho_y_vec,
- scs_int m) {
- scs_int i, count = 0;
- /* f cone */
- for (i = 0; i < k->z; ++i) {
+void SCS(set_r_y)(const ScsConeWork *c, scs_float scale, scs_float *r_y) {
+ scs_int i;
+ /* z cone */
+ for (i = 0; i < c->k->z; ++i) {
/* set rho_y small for z, similar to rho_x term, since z corresponds to
* dual free cone, this effectively decreases penalty on those entries
* and lets them be determined almost entirely by the linear system solve
*/
- rho_y_vec[i] = 1.0 / (1000. * scale);
+ r_y[i] = 1.0 / (1000. * scale);
}
- count += k->z;
/* others */
- for (i = count; i < m; ++i) {
- rho_y_vec[i] = 1.0 / scale;
+ for (i = c->k->z; i < c->m; ++i) {
+ r_y[i] = 1.0 / scale;
}
+}
- /* Note, if updating this to use different scales for other cones (e.g. box)
- * then you must be careful to also include the effect of the rho_y_vec
- * in the cone projection operator.
- */
-
- /* Increase rho_y_vec for the t term in the box cone */
- if (k->bsize) {
- rho_y_vec[k->z + k->l] *= BOX_T_SCALE;
+/* the function f aggregates the entries within each cone */
+void SCS(enforce_cone_boundaries)(const ScsConeWork *c, scs_float *vec,
+ scs_float (*f)(const scs_float *, scs_int)) {
+ scs_int i, j, delta;
+ scs_int count = c->cone_boundaries[0];
+ scs_float wrk;
+ for (i = 1; i < c->cone_boundaries_len; ++i) {
+ delta = c->cone_boundaries[i];
+ wrk = f(&(vec[count]), delta);
+ for (j = count; j < count + delta; ++j) {
+ vec[j] = wrk;
+ }
+ count += delta;
}
}
static inline scs_int get_sd_cone_size(scs_int s) {
return (s * (s + 1)) / 2;
@@ -69,11 +75,11 @@
/*
* boundaries will contain array of indices of rows of A corresponding to
* cone boundaries, boundaries[0] is starting index for cones of size strictly
* larger than 1, boundaries malloc-ed here so should be freed.
*/
-scs_int SCS(set_cone_boundaries)(const ScsCone *k, scs_int **cone_boundaries) {
+void set_cone_boundaries(const ScsCone *k, ScsConeWork *c) {
scs_int i, s_cone_sz, count = 0;
scs_int cone_boundaries_len =
1 + k->qsize + k->ssize + k->ed + k->ep + k->psize;
scs_int *b = (scs_int *)scs_calloc(cone_boundaries_len, sizeof(scs_int));
/* cones that can be scaled independently */
@@ -97,12 +103,12 @@
for (i = 0; i < k->psize; ++i) {
b[count + i] = 3;
}
count += k->psize;
/* other cones */
- *cone_boundaries = b;
- return cone_boundaries_len;
+ c->cone_boundaries = b;
+ c->cone_boundaries_len = cone_boundaries_len;
}
static scs_int get_full_cone_dims(const ScsCone *k) {
scs_int i, c = k->z + k->l + k->bsize;
if (k->qsize) {
@@ -119,11 +125,11 @@
c += 3 * k->ed;
}
if (k->ep) {
c += 3 * k->ep;
}
- if (k->p) {
+ if (k->psize) {
c += 3 * k->psize;
}
return c;
}
@@ -214,10 +220,13 @@
}
if (c->work) {
scs_free(c->work);
}
#endif
+ if (c->cone_boundaries) {
+ scs_free(c->cone_boundaries);
+ }
if (c->s) {
scs_free(c->s);
}
if (c->bu) {
scs_free(c->bu);
@@ -482,11 +491,11 @@
BLAS(scal)(&nb, &sqrt2, Xs, &nb_plus_one); /* not n_squared */
/* Solve eigenproblem, reuse workspaces */
BLAS(syev)("Vectors", "Lower", &nb, Xs, &nb, e, work, &lwork, &info);
if (info != 0) {
- scs_printf("WARN: LAPACK syev error, info = %i\n", info);
+ scs_printf("WARN: LAPACK syev error, info = %i\n", (int)info);
if (info < 0) {
return info;
}
}
@@ -585,40 +594,44 @@
c->bl[j] = D ? D[j + 1] * c->bl[j] / D[0] : c->bl[j];
}
}
}
-/* project onto { (t, s) | t * l <= s <= t * u, t >= 0 }, Newton's method on t
- tx = [t; s], total length = bsize
- uses Moreau since \Pi_K*(tx) = \Pi_K(-tx) + tx
+/* Project onto { (t, s) | t * l <= s <= t * u, t >= 0 }, Newton's method on t
+ tx = [t; s], total length = bsize, under Euclidean metric 1/r_box.
*/
static scs_float proj_box_cone(scs_float *tx, const scs_float *bl,
const scs_float *bu, scs_int bsize,
- scs_float t_warm_start) {
+ scs_float t_warm_start, scs_float *r_box) {
scs_float *x, gt, ht, t_prev, t = t_warm_start;
+ scs_float rho_t = 1, *rho = SCS_NULL, r;
scs_int iter, j;
if (bsize == 1) { /* special case */
tx[0] = MAX(tx[0], 0.0);
return tx[0];
}
-
x = &(tx[1]);
+ if (r_box) {
+ rho_t = 1.0 / r_box[0];
+ rho = &(r_box[1]);
+ }
+
/* should only require about 5 or so iterations, 1 or 2 if warm-started */
for (iter = 0; iter < BOX_CONE_MAX_ITERS; iter++) {
t_prev = t;
- /* incorporate the additional BOX_T_SCALE factor into the projection */
- gt = BOX_T_SCALE * (t - tx[0]); /* gradient */
- ht = BOX_T_SCALE; /* hessian */
+ gt = rho_t * (t - tx[0]); /* gradient */
+ ht = rho_t; /* hessian */
for (j = 0; j < bsize - 1; j++) {
+ r = rho ? 1.0 / rho[j] : 1.;
if (x[j] > t * bu[j]) {
- gt += (t * bu[j] - x[j]) * bu[j]; /* gradient */
- ht += bu[j] * bu[j]; /* hessian */
+ gt += r * (t * bu[j] - x[j]) * bu[j]; /* gradient */
+ ht += r * bu[j] * bu[j]; /* hessian */
} else if (x[j] < t * bl[j]) {
- gt += (t * bl[j] - x[j]) * bl[j]; /* gradient */
- ht += bl[j] * bl[j]; /* hessian */
+ gt += r * (t * bl[j] - x[j]) * bl[j]; /* gradient */
+ ht += r * bl[j] * bl[j]; /* hessian */
}
}
t = MAX(t - gt / MAX(ht, 1e-8), 0.); /* newton step */
#if VERBOSITY > 3
scs_printf("iter %i, t_new %1.3e, t_prev %1.3e, gt %1.3e, ht %1.3e\n", iter,
@@ -645,10 +658,11 @@
x[j] = t * bl[j];
}
/* x[j] unchanged otherwise */
}
tx[0] = t;
+
#if VERBOSITY > 3
scs_printf("box cone iters %i\n", (int)iter + 1);
#endif
return t;
}
@@ -716,77 +730,83 @@
v[1] = y;
v[2] = (v[2] < 0) ? -(r) : (r);
}
/* project onto the primal K cone in the paper */
+/* the r_y vector determines the INVERSE metric, ie, project under the
+ * diag(r_y)^-1 norm.
+ */
static scs_int proj_cone(scs_float *x, const ScsCone *k, ScsConeWork *c,
- scs_int normalize) {
+ scs_int normalize, scs_float *r_y) {
scs_int i, status;
scs_int count = 0;
+ scs_float *r_box = SCS_NULL;
+ scs_float *bu, *bl;
- if (k->z) {
+ if (k->z) { /* doesn't use r_y */
/* project onto primal zero / dual free cone */
memset(x, 0, k->z * sizeof(scs_float));
count += k->z;
}
- if (k->l) {
+ if (k->l) { /* doesn't use r_y */
/* project onto positive orthant */
for (i = count; i < count + k->l; ++i) {
x[i] = MAX(x[i], 0.0);
}
count += k->l;
}
- if (k->bsize) {
- /* project onto box cone */
- if (normalize) {
- c->box_t_warm_start = proj_box_cone(&(x[count]), c->bl, c->bu, k->bsize,
- c->box_t_warm_start);
- } else {
- c->box_t_warm_start = proj_box_cone(&(x[count]), k->bl, k->bu, k->bsize,
- c->box_t_warm_start);
+ if (k->bsize) { /* DOES use r_y */
+ if (r_y) {
+ r_box = &(r_y[count]);
}
+ /* project onto box cone */
+ bu = normalize ? c->bu : k->bu;
+ bl = normalize ? c->bl : k->bl;
+ c->box_t_warm_start = proj_box_cone(&(x[count]), bl, bu, k->bsize,
+ c->box_t_warm_start, r_box);
count += k->bsize; /* since b = (t,s), len(s) = bsize - 1 */
}
- if (k->qsize && k->q) {
+ if (k->qsize && k->q) { /* doesn't use r_y */
/* project onto second-order cones */
for (i = 0; i < k->qsize; ++i) {
proj_soc(&(x[count]), k->q[i]);
count += k->q[i];
}
}
- if (k->ssize && k->s) {
+ if (k->ssize && k->s) { /* doesn't use r_y */
/* project onto PSD cones */
for (i = 0; i < k->ssize; ++i) {
status = proj_semi_definite_cone(&(x[count]), k->s[i], c);
if (status < 0) {
return status;
}
count += get_sd_cone_size(k->s[i]);
}
}
- if (k->ep) {
- /*
- * exponential cone is not self dual, if s \in K
- * then y \in K^* and so if K is the primal cone
- * here we project onto K^*, via Moreau
- * \Pi_C^*(y) = y + \Pi_C(-y)
- */
+ if (k->ep) { /* doesn't use r_y */
+ /*
+ * exponential cone is not self dual, if s \in K
+ * then y \in K^* and so if K is the primal cone
+ * here we project onto K^*, via Moreau
+ * \Pi_C^*(y) = y + \Pi_C(-y)
+ */
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (i = 0; i < k->ep; ++i) {
proj_exp_cone(&(x[count + 3 * i]));
}
count += 3 * k->ep;
}
- if (k->ed) { /* dual exponential cone */
+ /* dual exponential cone */
+ if (k->ed) { /* doesn't use r_y */
/*
* exponential cone is not self dual, if s \in K
* then y \in K^* and so if K is the primal cone
* here we project onto K^*, via Moreau
* \Pi_C^*(y) = y + \Pi_C(-y)
@@ -810,19 +830,19 @@
x[idx + 2] -= t;
}
count += 3 * k->ed;
}
- if (k->psize && k->p) {
+ if (k->psize && k->p) { /* doesn't use r_y */
scs_float v[3];
scs_int idx;
/* don't use openmp for power cone
ifdef _OPENMP
pragma omp parallel for private(v, idx)
endif
*/
- for (i = 0; i < k->psize; ++i) {
+ for (i = 0; i < k->psize; ++i) { /* doesn't use r_y */
idx = count + 3 * i;
if (k->p[i] >= 0) {
/* primal power cone */
proj_power_cone(&(x[idx]), k->p[i]);
} else {
@@ -842,48 +862,79 @@
}
/* project onto OTHER cones */
return 0;
}
-ScsConeWork *SCS(init_cone)(const ScsCone *k, const ScsScaling *scal,
- scs_int cone_len) {
+ScsConeWork *SCS(init_cone)(const ScsCone *k, scs_int m) {
ScsConeWork *c = (ScsConeWork *)scs_calloc(1, sizeof(ScsConeWork));
- c->cone_len = cone_len;
- c->s = (scs_float *)scs_calloc(cone_len, sizeof(scs_float));
+ c->k = k;
+ c->m = m;
+ c->scaled_cones = 0;
+ set_cone_boundaries(k, c);
+ c->s = (scs_float *)scs_calloc(m, sizeof(scs_float));
+ if (k->ssize && k->s) {
+ if (set_up_sd_cone_work_space(c, k) < 0) {
+ SCS(finish_cone)(c);
+ return SCS_NULL;
+ }
+ }
+ return c;
+}
+
+void scale_box_cone(const ScsCone *k, ScsConeWork *c, ScsScaling *scal) {
if (k->bsize && k->bu && k->bl) {
c->box_t_warm_start = 1.;
if (scal) {
c->bu = (scs_float *)scs_calloc(k->bsize - 1, sizeof(scs_float));
c->bl = (scs_float *)scs_calloc(k->bsize - 1, sizeof(scs_float));
memcpy(c->bu, k->bu, (k->bsize - 1) * sizeof(scs_float));
memcpy(c->bl, k->bl, (k->bsize - 1) * sizeof(scs_float));
/* also does some sanitizing */
- normalize_box_cone(c, scal ? &(scal->D[k->z + k->l]) : SCS_NULL,
- k->bsize);
+ normalize_box_cone(c, &(scal->D[k->z + k->l]), k->bsize);
}
}
- if (k->ssize && k->s) {
- if (set_up_sd_cone_work_space(c, k) < 0) {
- SCS(finish_cone)(c);
- return SCS_NULL;
- }
- }
- return c;
}
-/* outward facing cone projection routine
- performs projection in-place
- if normalize > 0 then will use normalized (equilibrated) cones if applicable.
+/* Outward facing cone projection routine, performs projection in-place.
+ If normalize > 0 then will use normalized (equilibrated) cones if applicable.
+
+ Moreau decomposition for R-norm projections:
+
+ `x + R^{-1} \Pi_{C^*}^{R^{-1}} ( - R x ) = \Pi_C^R ( x )`
+
+ where \Pi^R_C is the projection onto C under the R-norm:
+
+ `||x||_R = \sqrt{x ' R x}`.
+
*/
-scs_int SCS(proj_dual_cone)(scs_float *x, const ScsCone *k, ScsConeWork *c,
- scs_int normalize) {
- scs_int status;
- /* copy x, s = x */
- memcpy(c->s, x, c->cone_len * sizeof(scs_float));
- /* negate x -> -x */
- SCS(scale_array)(x, -1., c->cone_len);
- /* project -x onto cone, x -> Pi_K(-x) */
- status = proj_cone(x, k, c, normalize);
- /* return Pi_K*(x) = s + Pi_K(-x) */
- SCS(add_scaled_array)(x, c->s, c->cone_len, 1.);
+scs_int SCS(proj_dual_cone)(scs_float *x, ScsConeWork *c, ScsScaling *scal,
+ scs_float *r_y) {
+ scs_int status, i;
+ const ScsCone *k = c->k;
+
+ if (!c->scaled_cones) {
+ scale_box_cone(k, c, scal);
+ c->scaled_cones = 1;
+ }
+
+ /* copy s = x */
+ memcpy(c->s, x, c->m * sizeof(scs_float));
+
+ /* x -> - Rx */
+ for (i = 0; i < c->m; ++i) {
+ x[i] *= r_y ? -r_y[i] : -1;
+ }
+
+ /* project -x onto cone, x -> \Pi_{C^*}^{R^{-1}}(-x) under r_y metric */
+ status = proj_cone(x, k, c, scal ? 1 : 0, r_y);
+
+ /* return x + R^{-1} \Pi_{C^*}^{R^{-1}} ( -x ) */
+ for (i = 0; i < c->m; ++i) {
+ if (r_y) {
+ x[i] = x[i] / r_y[i] + c->s[i];
+ } else {
+ x[i] += c->s[i];
+ }
+ }
+
return status;
}