lib/rumale/linear_model/elastic_net.rb in rumale-0.16.1 vs lib/rumale/linear_model/elastic_net.rb in rumale-0.17.0
- old
+ new
@@ -57,16 +57,16 @@
# This parameter is ignored if the Parallel gem is not loaded.
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
# @param random_seed [Integer] The seed value using to initialize the random generator.
def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0,
- max_iter: 100, batch_size: 50, tol: 1e-4,
+ max_iter: 200, batch_size: 50, tol: 1e-4,
n_jobs: nil, verbose: false, random_seed: nil)
check_params_numeric(learning_rate: learning_rate, momentum: momentum,
reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale,
max_iter: max_iter, batch_size: batch_size, tol: tol)
check_params_boolean(fit_bias: fit_bias, verbose: verbose)
- check_params_numeric_or_nil(decay: nil, n_jobs: n_jobs, random_seed: random_seed)
+ check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed)
check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
super()
@params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h)
@params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
@params[:random_seed] ||= srand