lib/rumale/linear_model/elastic_net.rb in rumale-0.16.1 vs lib/rumale/linear_model/elastic_net.rb in rumale-0.17.0

- old
+ new

@@ -57,16 +57,16 @@ # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0, - max_iter: 100, batch_size: 50, tol: 1e-4, + max_iter: 200, batch_size: 50, tol: 1e-4, n_jobs: nil, verbose: false, random_seed: nil) check_params_numeric(learning_rate: learning_rate, momentum: momentum, reg_param: reg_param, l1_ratio: l1_ratio, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size, tol: tol) check_params_boolean(fit_bias: fit_bias, verbose: verbose) - check_params_numeric_or_nil(decay: nil, n_jobs: n_jobs, random_seed: random_seed) + check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size) super() @params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h) @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] @params[:random_seed] ||= srand