lib/rumale/kernel_machine/kernel_svc.rb in rumale-0.13.8 vs lib/rumale/kernel_machine/kernel_svc.rb in rumale-0.14.0

- old
+ new

@@ -50,14 +50,13 @@ # If nil is given, the methods do not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) - check_params_float(reg_param: reg_param) - check_params_integer(max_iter: max_iter) + check_params_numeric(reg_param: reg_param, max_iter: max_iter) check_params_boolean(probability: probability) - check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed) + check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed) check_params_positive(reg_param: reg_param, max_iter: max_iter) @params = {} @params[:reg_param] = reg_param @params[:max_iter] = max_iter @params[:probability] = probability @@ -75,12 +74,12 @@ # @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples]) # The kernel matrix of the training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model. # @return [KernelSVC] The learned classifier itself. def fit(x, y) - check_sample_array(x) - check_label_array(y) + x = check_convert_sample_array(x) + y = check_convert_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] @@ -115,22 +114,22 @@ # # @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples]) # The kernel matrix between testing samples and training samples to compute the scores. # @return [Numo::DFloat] (shape: [n_testing_samples, n_classes]) Confidence score per sample. def decision_function(x) - check_sample_array(x) + x = check_convert_sample_array(x) x.dot(@weight_vec.transpose) end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples]) # The kernel matrix between testing samples and training samples to predict the labels. # @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample. def predict(x) - check_sample_array(x) + x = check_convert_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) @@ -146,10 +145,10 @@ # # @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples]) # The kernel matrix between testing samples and training samples to predict the labels. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) - check_sample_array(x) + x = check_convert_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose end