lib/rumale/linear_model/svr.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/svr.rb in rumale-linear_model-0.25.0
- old
+ new
@@ -1,99 +1,70 @@
# frozen_string_literal: true
+require 'lbfgsb'
+
require 'rumale/base/regressor'
require 'rumale/validation'
-require 'rumale/linear_model/base_sgd'
+require_relative 'base_estimator'
+
module Rumale
module LinearModel
- # SVR is a class that implements Support Vector Regressor
- # with stochastic gradient descent optimization.
+ # SVR is a class that implements Support Vector Regressor with the squared epsilon-insensitive loss.
#
# @note
# Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM.
# If you prefer execution speed, you should use Rumale::SVM::LinearSVR.
# https://github.com/yoshoku/rumale-svm
#
# @example
# require 'rumale/linear_model/svr'
#
- # estimator =
- # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1)
+ # estimator = Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1)
# estimator.fit(training_samples, traininig_target_values)
# results = estimator.predict(testing_samples)
- #
- # *Reference*
- # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
- # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
- # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
- class SVR < BaseSGD
- include ::Rumale::Base::Regressor
+ class SVR < Rumale::LinearModel::BaseEstimator
+ include Rumale::Base::Regressor
- # Return the weight vector for SVR.
- # @return [Numo::DFloat] (shape: [n_outputs, n_features])
- attr_reader :weight_vec
-
- # Return the bias term (a.k.a. intercept) for SVR.
- # @return [Numo::DFloat] (shape: [n_outputs])
- attr_reader :bias_term
-
- # Return the random generator for performing random sampling.
- # @return [Random]
- attr_reader :rng
-
# Create a new regressor with Support Vector Machine by the SGD optimization.
#
- # @param learning_rate [Float] The initial value of learning rate.
- # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
- # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
- # If nil is given, the decay sets to 'reg_param * learning_rate'.
- # @param momentum [Float] The momentum factor.
- # @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
- # @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
- # If penalty set to 'l2' or 'l1', this parameter is ignored.
- # If l1_ratio = 1, the regularization is similar to Lasso.
- # If l1_ratio = 0, the regularization is similar to Ridge.
- # If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
# @param reg_param [Float] The regularization parameter.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param bias_scale [Float] The scale of the bias term.
# @param epsilon [Float] The margin of tolerance.
# @param max_iter [Integer] The maximum number of epochs that indicates
# how many times the whole data is given to the training process.
- # @param batch_size [Integer] The size of the mini batches.
# @param tol [Float] The tolerance of loss for terminating optimization.
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
# If nil is given, the method does not execute in parallel.
# If zero or less is given, it becomes equal to the number of processors.
# This parameter is ignored if the Parallel gem is not loaded.
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
- # @param random_seed [Integer] The seed value using to initialize the random generator.
- def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
- penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
- fit_bias: true, bias_scale: 1.0,
- epsilon: 0.1,
- max_iter: 1000, batch_size: 50, tol: 1e-4,
- n_jobs: nil, verbose: false, random_seed: nil)
+ def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, tol: 1e-4,
+ n_jobs: nil, verbose: false)
super()
- @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] })
- @params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
- @params[:random_seed] ||= srand
- @rng = Random.new(@params[:random_seed])
- @penalty_type = @params[:penalty]
- @loss_func = ::Rumale::LinearModel::Loss::EpsilonInsensitive.new(epsilon: @params[:epsilon])
+ @params = {
+ reg_param: reg_param,
+ fit_bias: fit_bias,
+ bias_scale: bias_scale,
+ epsilon: epsilon,
+ max_iter: max_iter,
+ tol: tol,
+ n_jobs: n_jobs,
+ verbose: verbose
+ }
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
# @return [SVR] The learned regressor itself.
def fit(x, y)
- x = ::Rumale::Validation.check_convert_sample_array(x)
- y = ::Rumale::Validation.check_convert_target_value_array(y)
- ::Rumale::Validation.check_sample_size(x, y)
+ x = Rumale::Validation.check_convert_sample_array(x)
+ y = Rumale::Validation.check_convert_target_value_array(y)
+ Rumale::Validation.check_sample_size(x, y)
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
n_features = x.shape[1]
if n_outputs > 1
@@ -118,9 +89,40 @@
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
def predict(x)
x = ::Rumale::Validation.check_convert_sample_array(x)
x.dot(@weight_vec.transpose) + @bias_term
+ end
+
+ private
+
+ def partial_fit(base_x, single_y)
+ fnc = proc do |w, x, y, eps, reg_param|
+ n_samples = x.shape[0]
+ z = x.dot(w)
+ d = y - z
+ loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, d.abs - eps)**2).sum.fdiv(n_samples)
+ c = x.class.zeros(n_samples)
+ indices = d.gt(eps)
+ c[indices] = -d[indices] + eps if indices.count.positive?
+ indices = d.lt(eps)
+ c[indices] = -d[indices] - eps if indices.count.positive?
+ grad = reg_param * w + 2.fdiv(n_samples) * x.transpose.dot(c)
+ [loss, grad]
+ end
+
+ base_x = expand_feature(base_x) if fit_bias?
+
+ n_features = base_x.shape[1]
+ w_init = Numo::DFloat.zeros(n_features)
+
+ res = Lbfgsb.minimize(
+ fnc: fnc, jcb: true, x_init: w_init, args: [base_x, single_y, @params[:epsilon], @params[:reg_param]],
+ maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
+ verbose: @params[:verbose] ? 1 : -1
+ )
+
+ split_weight(res[:x])
end
end
end
end