lib/rumale/linear_model/svc.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/svc.rb in rumale-linear_model-0.25.0
- old
+ new
@@ -1,17 +1,18 @@
# frozen_string_literal: true
+require 'lbfgsb'
+
require 'rumale/base/classifier'
-require 'rumale/linear_model/base_sgd'
require 'rumale/probabilistic_output'
require 'rumale/validation'
+require_relative 'base_estimator'
+
module Rumale
- # This module consists of the classes that implement generalized linear models.
module LinearModel
- # SVC is a class that implements Support Vector Classifier
- # with stochastic gradient descent optimization.
+ # SVC is a class that implements Support Vector Classifier with the squared hinge loss.
# For multiclass classification problem, it uses one-vs-the-rest strategy.
#
# @note
# Rumale::SVM provides linear support vector classifier based on LIBLINEAR.
# If you prefer execution speed, you should use Rumale::SVM::LinearSVC.
@@ -19,99 +20,70 @@
#
# @example
# require 'rumale/linear_model/svc'
#
# estimator =
- # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1)
+ # Rumale::LinearModel::SVC.new(reg_param: 1.0)
# estimator.fit(training_samples, traininig_labels)
# results = estimator.predict(testing_samples)
- #
- # *Reference*
- # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
- # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009.
- # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
- class SVC < BaseSGD
- include ::Rumale::Base::Classifier
+ class SVC < Rumale::LinearModel::BaseEstimator
+ include Rumale::Base::Classifier
- # Return the weight vector for SVC.
- # @return [Numo::DFloat] (shape: [n_classes, n_features])
- attr_reader :weight_vec
-
- # Return the bias term (a.k.a. intercept) for SVC.
- # @return [Numo::DFloat] (shape: [n_classes])
- attr_reader :bias_term
-
# Return the class labels.
# @return [Numo::Int32] (shape: [n_classes])
attr_reader :classes
- # Return the random generator for performing random sampling.
- # @return [Random]
- attr_reader :rng
-
- # Create a new classifier with Support Vector Machine by the SGD optimization.
+ # Create a new linear classifier with Support Vector Machine with the squared hinge loss.
#
- # @param learning_rate [Float] The initial value of learning rate.
- # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t).
- # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds.
- # If nil is given, the decay sets to 'reg_param * learning_rate'.
- # @param momentum [Float] The momentum factor.
- # @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet').
- # @param l1_ratio [Float] The elastic-net type regularization mixing parameter.
- # If penalty set to 'l2' or 'l1', this parameter is ignored.
- # If l1_ratio = 1, the regularization is similar to Lasso.
- # If l1_ratio = 0, the regularization is similar to Ridge.
- # If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2.
# @param reg_param [Float] The regularization parameter.
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
# @param bias_scale [Float] The scale of the bias term.
# @param max_iter [Integer] The maximum number of epochs that indicates
# how many times the whole data is given to the training process.
- # @param batch_size [Integer] The size of the mini batches.
# @param tol [Float] The tolerance of loss for terminating optimization.
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
# If nil is given, the methods do not execute in parallel.
# If zero or less is given, it becomes equal to the number of processors.
# This parameter is ignored if the Parallel gem is not loaded.
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
- # @param random_seed [Integer] The seed value using to initialize the random generator.
- def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9,
- penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5,
- fit_bias: true, bias_scale: 1.0,
- max_iter: 1000, batch_size: 50, tol: 1e-4,
- probability: false,
- n_jobs: nil, verbose: false, random_seed: nil)
+ # 'iterate.dat' file is generated by lbfgsb.rb.
+ def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, probability: false,
+ n_jobs: nil, verbose: false)
super()
- @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] })
- @params[:decay] ||= @params[:reg_param] * @params[:learning_rate]
- @params[:random_seed] ||= srand
- @rng = Random.new(@params[:random_seed])
- @penalty_type = @params[:penalty]
- @loss_func = ::Rumale::LinearModel::Loss::HingeLoss.new
+ @params = {
+ reg_param: reg_param,
+ fit_bias: fit_bias,
+ bias_scale: bias_scale,
+ max_iter: max_iter,
+ tol: tol,
+ probability: probability,
+ n_jobs: n_jobs,
+ verbose: verbose
+ }
end
# Fit the model with given training data.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
# @return [SVC] The learned classifier itself.
def fit(x, y)
- x = ::Rumale::Validation.check_convert_sample_array(x)
- y = ::Rumale::Validation.check_convert_label_array(y)
- ::Rumale::Validation.check_sample_size(x, y)
+ x = Rumale::Validation.check_convert_sample_array(x)
+ y = Rumale::Validation.check_convert_label_array(y)
+ Rumale::Validation.check_sample_size(x, y)
@classes = Numo::Int32[*y.to_a.uniq.sort]
+ x = expand_feature(x) if fit_bias?
if multiclass_problem?
n_classes = @classes.size
n_features = x.shape[1]
- # initialize model.
+ n_features -= 1 if fit_bias?
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
@bias_term = Numo::DFloat.zeros(n_classes)
@prob_param = Numo::DFloat.zeros(n_classes, 2)
- # fit model.
models = if enable_parallel?
parallel_map(n_classes) do |n|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
partial_fit(x, bin_y)
end
@@ -119,11 +91,10 @@
Array.new(n_classes) do |n|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
partial_fit(x, bin_y)
end
end
- # store model.
models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model }
else
negative_label = @classes[0]
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
@weight_vec, @bias_term, @prob_param = partial_fit(x, bin_y)
@@ -135,21 +106,21 @@
# Calculate confidence scores for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
def decision_function(x)
- x = ::Rumale::Validation.check_convert_sample_array(x)
+ x = Rumale::Validation.check_convert_sample_array(x)
x.dot(@weight_vec.transpose) + @bias_term
end
# Predict class labels for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
def predict(x)
- x = ::Rumale::Validation.check_convert_sample_array(x)
+ x = Rumale::Validation.check_convert_sample_array(x)
n_samples = x.shape[0]
predicted = if multiclass_problem?
decision_values = decision_function(x)
if enable_parallel?
@@ -167,33 +138,54 @@
# Predict probability for samples.
#
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
def predict_proba(x)
- x = ::Rumale::Validation.check_convert_sample_array(x)
+ x = Rumale::Validation.check_convert_sample_array(x)
if multiclass_problem?
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
(probs.transpose / probs.sum(axis: 1)).transpose.dup
else
- n_samples, = x.shape
+ n_samples = x.shape[0]
probs = Numo::DFloat.zeros(n_samples, 2)
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
probs[true, 0] = 1.0 - probs[true, 1]
probs
end
end
private
- def partial_fit(x, bin_y)
- w, b = super
- p = if @params[:probability]
- ::Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w.transpose) + b, bin_y)
- else
- Numo::DFloat[1, 0]
- end
- [w, b, p]
+ def partial_fit(base_x, bin_y)
+ fnc = proc do |w, x, y, reg_param|
+ n_samples = x.shape[0]
+ z = x.dot(w)
+ t = 1 - y * z
+ loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, t)**2).sum.fdiv(n_samples)
+ indices = t.gt(0)
+ grad = reg_param * w
+ if indices.count.positive?
+ sx = x[indices, true]
+ sy = y[indices]
+ grad += 2.fdiv(n_samples) * sx.transpose.dot((sx.dot(w) - sy))
+ end
+ [loss, grad]
+ end
+
+ n_features = base_x.shape[1]
+ w_init = Numo::DFloat.zeros(n_features)
+
+ res = Lbfgsb.minimize(
+ fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]],
+ maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON,
+ verbose: @params[:verbose] ? 1 : -1
+ )
+
+ prb = @params[:probability] ? Rumale::ProbabilisticOutput.fit_sigmoid(base_x.dot(res[:x]), bin_y) : Numo::DFloat[1, 0]
+ w, b = split_weight(res[:x])
+
+ [w, b, prb]
end
def multiclass_problem?
@classes.size > 2
end