lib/rumale/linear_model/svc.rb in rumale-linear_model-0.24.0 vs lib/rumale/linear_model/svc.rb in rumale-linear_model-0.25.0

- old
+ new

@@ -1,17 +1,18 @@ # frozen_string_literal: true +require 'lbfgsb' + require 'rumale/base/classifier' -require 'rumale/linear_model/base_sgd' require 'rumale/probabilistic_output' require 'rumale/validation' +require_relative 'base_estimator' + module Rumale - # This module consists of the classes that implement generalized linear models. module LinearModel - # SVC is a class that implements Support Vector Classifier - # with stochastic gradient descent optimization. + # SVC is a class that implements Support Vector Classifier with the squared hinge loss. # For multiclass classification problem, it uses one-vs-the-rest strategy. # # @note # Rumale::SVM provides linear support vector classifier based on LIBLINEAR. # If you prefer execution speed, you should use Rumale::SVM::LinearSVC. @@ -19,99 +20,70 @@ # # @example # require 'rumale/linear_model/svc' # # estimator = - # Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1) + # Rumale::LinearModel::SVC.new(reg_param: 1.0) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) - # - # *Reference* - # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. - # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009. - # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. - class SVC < BaseSGD - include ::Rumale::Base::Classifier + class SVC < Rumale::LinearModel::BaseEstimator + include Rumale::Base::Classifier - # Return the weight vector for SVC. - # @return [Numo::DFloat] (shape: [n_classes, n_features]) - attr_reader :weight_vec - - # Return the bias term (a.k.a. intercept) for SVC. - # @return [Numo::DFloat] (shape: [n_classes]) - attr_reader :bias_term - # Return the class labels. # @return [Numo::Int32] (shape: [n_classes]) attr_reader :classes - # Return the random generator for performing random sampling. - # @return [Random] - attr_reader :rng - - # Create a new classifier with Support Vector Machine by the SGD optimization. + # Create a new linear classifier with Support Vector Machine with the squared hinge loss. # - # @param learning_rate [Float] The initial value of learning rate. - # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). - # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. - # If nil is given, the decay sets to 'reg_param * learning_rate'. - # @param momentum [Float] The momentum factor. - # @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet'). - # @param l1_ratio [Float] The elastic-net type regularization mixing parameter. - # If penalty set to 'l2' or 'l1', this parameter is ignored. - # If l1_ratio = 1, the regularization is similar to Lasso. - # If l1_ratio = 0, the regularization is similar to Ridge. - # If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. - # @param batch_size [Integer] The size of the mini batches. # @param tol [Float] The tolerance of loss for terminating optimization. # @param probability [Boolean] The flag indicating whether to perform probability estimation. # @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel. # If nil is given, the methods do not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. - # @param random_seed [Integer] The seed value using to initialize the random generator. - def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, - penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5, - fit_bias: true, bias_scale: 1.0, - max_iter: 1000, batch_size: 50, tol: 1e-4, - probability: false, - n_jobs: nil, verbose: false, random_seed: nil) + # 'iterate.dat' file is generated by lbfgsb.rb. + def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, probability: false, + n_jobs: nil, verbose: false) super() - @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] }) - @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] - @params[:random_seed] ||= srand - @rng = Random.new(@params[:random_seed]) - @penalty_type = @params[:penalty] - @loss_func = ::Rumale::LinearModel::Loss::HingeLoss.new + @params = { + reg_param: reg_param, + fit_bias: fit_bias, + bias_scale: bias_scale, + max_iter: max_iter, + tol: tol, + probability: probability, + n_jobs: n_jobs, + verbose: verbose + } end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [SVC] The learned classifier itself. def fit(x, y) - x = ::Rumale::Validation.check_convert_sample_array(x) - y = ::Rumale::Validation.check_convert_label_array(y) - ::Rumale::Validation.check_sample_size(x, y) + x = Rumale::Validation.check_convert_sample_array(x) + y = Rumale::Validation.check_convert_label_array(y) + Rumale::Validation.check_sample_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] + x = expand_feature(x) if fit_bias? if multiclass_problem? n_classes = @classes.size n_features = x.shape[1] - # initialize model. + n_features -= 1 if fit_bias? @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) @prob_param = Numo::DFloat.zeros(n_classes, 2) - # fit model. models = if enable_parallel? parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end @@ -119,11 +91,10 @@ Array.new(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end end - # store model. models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model } else negative_label = @classes[0] bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term, @prob_param = partial_fit(x, bin_y) @@ -135,21 +106,21 @@ # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) - x = ::Rumale::Validation.check_convert_sample_array(x) + x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) - x = ::Rumale::Validation.check_convert_sample_array(x) + x = Rumale::Validation.check_convert_sample_array(x) n_samples = x.shape[0] predicted = if multiclass_problem? decision_values = decision_function(x) if enable_parallel? @@ -167,33 +138,54 @@ # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) - x = ::Rumale::Validation.check_convert_sample_array(x) + x = Rumale::Validation.check_convert_sample_array(x) if multiclass_problem? probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) (probs.transpose / probs.sum(axis: 1)).transpose.dup else - n_samples, = x.shape + n_samples = x.shape[0] probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end end private - def partial_fit(x, bin_y) - w, b = super - p = if @params[:probability] - ::Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w.transpose) + b, bin_y) - else - Numo::DFloat[1, 0] - end - [w, b, p] + def partial_fit(base_x, bin_y) + fnc = proc do |w, x, y, reg_param| + n_samples = x.shape[0] + z = x.dot(w) + t = 1 - y * z + loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, t)**2).sum.fdiv(n_samples) + indices = t.gt(0) + grad = reg_param * w + if indices.count.positive? + sx = x[indices, true] + sy = y[indices] + grad += 2.fdiv(n_samples) * sx.transpose.dot((sx.dot(w) - sy)) + end + [loss, grad] + end + + n_features = base_x.shape[1] + w_init = Numo::DFloat.zeros(n_features) + + res = Lbfgsb.minimize( + fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]], + maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, + verbose: @params[:verbose] ? 1 : -1 + ) + + prb = @params[:probability] ? Rumale::ProbabilisticOutput.fit_sigmoid(base_x.dot(res[:x]), bin_y) : Numo::DFloat[1, 0] + w, b = split_weight(res[:x]) + + [w, b, prb] end def multiclass_problem? @classes.size > 2 end